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Abstract

Networks provide a powerful formalism for modeling complex sys-

tems, by representing the underlying set of pairwise interactions.

But much of the structure within these systems involves interac-

tions that take place among more than two nodes at once — for

example, communication within a group rather than person-to-

person, collaboration among a team rather than a pair of co-authors,

or biological interaction between a set of molecules rather than

just two. We refer to these type of simultaneous interactions on

sets of more than two nodes as higher-order interactions; they are

ubiquitous, but the empirical study of them has lacked a general

framework for evaluating higher-order models. Here we introduce

such a framework, based on link prediction, a fundamental prob-

lem in network analysis. The traditional link prediction problem

seeks to predict the appearance of new links in a network, and here

we adapt it to predict which (larger) sets of elements will have fu-

ture interactions. We study the temporal evolution of 19 datasets

from a variety of domains, and use our higher-order formulation

of link prediction to assess the types of structural features that are

most predictive of new multi-way interactions. Among our results,

we find that different domains vary considerably in their distri-

bution of higher-order structural parameters, and that the higher-

order link prediction problem exhibits some fundamental differ-

ences from traditional pairwise link prediction, with a greater role

for local rather than long-range information in predicting the ap-

pearance of new interactions.

1 INTRODUCTION

Networks are a fundamental abstraction for complex systems and

relational data throughout the sciences [2, 17, 43]. The basic premise

of network models is to represent the elements of the underlying

system as nodes, and to use the links of the network to capture

pairwise relationships — in this way, a social network can repre-

sent the friendships between pairs of people; a Web graph can en-

code links among Web pages or topic categories; and a biological

network can represent the interactions among pairs of biological

molecules or components [12, 16, 22, 43]. But much of the structure

in these systems involves higher-order interactions on more than

two entities at once [8, 23, 38, 44, 63]: people often communicate

or interact in social groups, not just in pairs; associative relations

among ideas or topics often involve the intersection of multiple

concepts; and joint protein interactions in biological networks are

associated with important phenomena [41].

These types of higher-order interactions are apparent even in

the standard genres of datasets used for network analysis; for ex-

ample, co-authorship networks are built from data in which larger

groups write papers together; similarly, email networks are based

onmessages that often havemultiple recipients.While higher-order

structure is not captured by a graph, it may bemodeled via a collec-

tion of formalisms that include set systems [21], hypergraphs [9],

simplicial complexes [24], and bipartite affiliation graphs [18, 44].

Despite the existence of mathematical formalisms for higher-

order structure, it has been challenging to adapt the empirical method-

ology developed for graph and network data to the higher-order

case, due to the lack of general frameworks for evaluating mod-

els of higher-order structure. Here we propose such a framework,

drawing on the concept of link prediction, a fundamental problem

in network analysis [34, 36].

Link prediction is a means of evaluating network models by

taking network data that evolves over time [7, 26, 32] and see-

ing how well a given model predicts the appearance of new links

— for example, new co-authorships appearing in a co-author net-

work, or new messages between pairs of people in an email net-

work. Link prediction has proved valuable both for methodolog-

ical reasons and also in concrete applications. Methodologically,

asking whether one model is significantly better than another at

predicting new links provides a data-driven way of assessing the

effectiveness of the models. But since link prediction cuts across

many disciplines, it also has a range of direct applications, includ-

ing predicting friendships in social networks [4, 65], inferring new

relationships between genes and diseases [39, 66], and suggesting

novel connections in the scientific community [34, 62].

In this paper, we introduce an analogue of link prediction for

higher-order structure, providing a general framework for eval-

uating models in any data where this type of structure evolves

over time through the appearance of new, higher-order interac-

tions — for example, predicting which sets (rather than just pairs)

of authors will write a paper together, or which sets of people

will appear as joint recipients on a new email message. We study

the temporal evolution of 19 network datasets from a variety of

domains, including social networks, online communication, and

biomedicine, where each dataset is a collection of time-stamped

sets of nodes, which we call simplices. The nodes in each given

simplex take part in a shared interaction at the given time-stamp

(Fig. 1A). For example, in a co-authorship network, a simplex cor-

responds to the set of authors of a publication.

The basic premise in link prediction—whether pairwise or higher-

order — is to use properties of the structure up to some time t to

predict the appearance of new interactions after t . For higher-order





Table 1: Summary counts for datasets. Each dataset is a col-

lection of timestamped simplices.

Dataset nodes edges in timestamped unique

proj. graph simplices simplices

coauth-DBLP 1,924,991 7,904,336 3,700,067 2,599,087

coauth-MAG-Geology 1,256,385 512,0762 1,590,335 1,207,390

coauth-MAG-History 1,014,734 1,156,914 1,812,511 895,668

music-rap-genius 56,832 123,889 224,878 85,429

tags-stack-overflow 49,998 4,147,302 14,458,875 5,675,497

tags-math-sx 1,629 91,685 822,059 174,933

tags-ask-ubuntu 3,029 132,703 271,233 151,441

threads-stack-overflow 2,675,955 20,999,838 11,305,343 9,705,709

threads-math-sx 176,445 1,089,307 719,792 595,778

threads-ask-ubuntu 125,602 187,157 192,947 167,001

NDC-substances 5,311 88,268 112,405 10,025

NDC-classes 1,161 6,222 49,724 1,222

DAWN 2,558 122,963 2,272,433 143,523

congress-bills 1,718 424,932 260,851 85,082

congress-committees 863 38,136 679 678

email-Eu 998 29,299 234,760 25,791

email-Enron 143 1,800 10,883 1,542

contact-high-school 327 5,818 172,035 7,937

contact-primary-school 242 8,317 106,879 12,799

in many domains highlights the richness of the underlying prob-

lem, and we believe the array ofmethods presented here can poten-

tially help suggest further progress on these questions in higher-

order structure.

2 STATIC ANALYSIS: OPEN AND CLOSED
TRIANGLES

Before getting to the higher-order link prediction problem, we first

provide a brief overview and analysis of the basic structure of our

datasets. We represent each dataset by a collection of N times-

tamped simplices, {(Si , ti )}
N
i=1, where ti ∈ R is the time at which

simplex Si was observed in the data. Each simplex Si is a subset rep-

resenting the nodes in the ith simplex. If |Si | = k , we say that Si
is a k-node simplex.1 This set-based representation provides a nat-

ural format for datasets from a range of domains. For the present

study, we focus on the following large collection of 19 datasets:

• Co-authorship data (coauth-DBLP, coauth-MAG-History, coauth-

MAG-Geology): nodes are authors and a simplex is a publi-

cation.

• Online tagging data (tags-stack-overflow, tags-math-sx, tags-

ask-ubuntu): nodes are tags (annotations) and a simplex is a

set of tags for a question on a question-and-answer forum.

• Online thread participation data (threads-stack-overflow, threads-

math-sx, threads-ask-ubuntu): nodes are users and a sim-

plex is a set of users answering a particular question on a

question-and-answer forum.

• Drug networks from the National Drug Code Directory (NDC-

classes, NDC-substances): in the first dataset, nodes are class

labels (e.g., serotonin reuptake inhibitor) and a simplex is

the set of class labels applied to a drug (NDC-classes); in

the second dataset, nodes are substances (e.g., testosterone)

and a simplex is the set of substances in a drug.

1Such a structure would be called a (k-1)-simplex in algebraic topology, and the set of
all its pairs would be called a k-clique in graph theory.

• U.S. Congress data (congress-committees [54], congress-bills [20]):

nodes are members of Congress and a simplex is the set of

members in a committee or co-sponsoring a bill.

• Email networks (email-Enron [29], email-Eu [48]): nodes are

email addresses and a simplex is the set of addresses sending

or receiving an email.

• Contact networks (contact-high-school [37], contact-primary-

school [61]): nodes are persons and a simplex is a set of per-

sons in close proximity to one another at a given time.

• Drug use from the Drug Abuse Warning Network (DAWN):

nodes are drugs and a simplex is the set of drugs reportedly

used by a patient prior to an emergency department visit.

• Music collaboration (music-rap-genius): nodes are rap artists

and a simplex is a set of artists collaborating on a song.

All datasets except the U.S. congress committee membership and

music collaboration datasets are available at

http://www.cs.cornell.edu/~arb/data/ .

Summary statistics of the datasets are in Table 1, and Appen-

dix A provides more details on the datasets. To provide uniformity

across datasets, we restrict to simplices consisting of at most 25

nodes. This is relevant to, e.g., the co-authorship data in which

large consortia of hundred or more authors may collaborate on a

single paper. However, such events are rare and are not relevant

for our discussion below.

We focus in the following on the distinction between open ver-

sus closed triangles, as this corresponds to the simplest case of sim-

plicial closure as defined above. Furthermore, triangles are one of

the most important structural patterns in network analysis [30, 33,

38, 56]. As discussed above, there are two types of triangles (Fig. 1),

which cannot be distinguished by the weighted projected graph

alone. In a closed triangle, all three nodes have co-appeared in at

least one simplex. Formally, {u,v,w} is a closed triangle if there ex-

ists some simplex Si for which {u,v,w} ⊂ Si . In an open triangle,

on the other hand, every pair of the three nodes has co-appeared in

at least one simplex, but no single simplex contains all three nodes.

Every simplex with at least 3 nodes will directly create a closed

triangle, while open triangles are essentially coincidental. Thus,

one might intuit that closed triangles should be much more com-

mon than open triangles in our data. Moreover, larger simplices

lead to many closed triangles: for instance, a k-node simplex con-

tributes
(k
3

)
closed triangles. Surprisingly, however, our analysis

reveals that open triangles are more common than closed ones in

most of our datasets (Figs. 2C and 2D). While the distribution of

simplex sizes is broadly similar in most datasets (Fig. 2B), jointly

analyzing the fraction of triangles that are open with the edge den-

sity in the projected graph reveals a rich landscape of datasets

(Fig. 2C): (i) low-density with a small fraction of open triangles

(co-authorships and music collaboration); (ii) low-density with a

large fraction of open triangles (stack exchange threads) (iii) high-

density with a large fraction of open triangles (stack exchange tags,

contact networks, Congress bill co-sponsorship); and (iv) high-density

with medium fraction of open triangles (email, Congress commit-

tee membership, NDC substances and classes). Remarkably, these

results are not skewed by large simplices — the picture is broadly

preserved when restricting the datasets to only the 3-node sim-

plices (Fig. 2E).
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Figure 2: Structure of datasets. (A) Legend for subfigures (B–F). Within each domain (denoted by marker type), datasets are

ordered by total number of simplices (green being the largest, orange the second largest, and purple the smallest number

simplices). (B) Distribution of simplex sizes. In most datasets, small simplices (≤ 4 nodes) are the most common. The congress-

committees dataset has no 3-node simplices, so it does not appear in subfigures (E–F). (C–F) Dataset landscapes in terms of

fraction of triangles that are open and either edge density (C,E) or average degree (D,F) when considering simplices with 25

or fewer nodes (C–D) or just 3-node simplices (E–F). Datasets from the same domain tend to be similar with respect to these

features, whether or not we include simplices with greater than 3 nodes. (G–H) Distribution of fraction of open triangles and

either edge density (G) or average degree (H) in simulated data from a model where each triple of n total nodes forms a 3-node

simplex with probability p = 1/nb , b ∈ [0.8, 1.8]. Color scales with b so that smaller larger p are lighter and smaller p are darker.

Varying b creates datasets spanning many fractions of open triangles.

If we measure average unweighted degree instead of edge den-

sity (along with fraction of open triangles) we again find a substan-

tial diversity, and datasets from the same domain behave similarly

with respect to these two features (Fig. 2D). Restricting the data to

only 3-node simplices, we find a near-linear relationship between

the fraction of open triangles and the log of the average degree

(Fig. 2F). A linear model for the data in Fig. 2F has standard errors

of 0.08 for the intercept and 0.03 for the log average degree regres-

sion coefficient with R2 = 0.85, compared to standard errors of 0.16

and 0.04 with R2 = 0.38 for a linear model for the data in Fig. 2D.

This suggests that larger simplices lead to diversity in the data.

So why is there an abundance of open triangles, which seems to

contradict intuition? One extreme hypothesis is that 3-node sim-

plices form independently with a fixed probability. In this case,

open triangles can indeed becomemuchmore common than closed

ones. To see this, suppose that a dataset consists only of 3-node

simplices, and a given set of three nodes {u,v,w}, 1 ≤ u,v,w ≤ n

is a simplex with probability p = 1/nb , for b > 0. Let Xuvw be the

indicator random variable that {u,v,w} is an open triangle. Then,

for large n, it follows from the independence assumption that

E[Xuvw ] ≈ (1 − (1 − 1/nb )
n
)
3
. (1)

There are two asymptotic regimes here depending on the value

of b . If b < 1, then (1− 1/nb )n ≤ e−n
1−b

, and E[Xuvw ] approaches

1 as n gets large. If b > 1, on the other hand,

E[Xuvw ] ≈ (1 − (1 − 1/nb )n)3 = O(1/n3b−3), (2)

Let us now denote the set of open triangles by O and the set of

closed triangles by C. According to our calculations above, for

large n, the expected number of open triangles would be E[|O|] =

∑
{u,v,w } E[Xuvw ] = O(n

3) if b < 1. For b > 1 the expected num-

ber of open triangles for large n is E[|O|] = O(n3(2−b )). In contrast

to the case of open triangles, the expected number of closed trian-

gles is always E[|C|] = p ·
(n
3

)
= O(n3−b ). Therefore, if b < 3/2,

the number of open triangles grows faster, whereas if b > 3/2, the

number of closed triangles grows faster. To summarize, if the prob-

ability of 3-node simplex to form is large (p > 1/n3/2) and there are

many nodes (n is large), then we can expect more open triangles

than closed ones under this simple independent model.

To illustrate these points numerically, we generate 5 random

samples from this model for b = 0.8, 0.82, 0.84, . . . , 1.8 and n =

25, 50, 100, 200. As suggested by the above calculations, the sam-

ples drawn have a fraction of open triangles spanning the interval

between 0 and 1 (Figs. 2G and 2H). When the number of nodes n is

larger, the edge density is smaller (Fig. 2G) and the average degree

is larger (Fig. 2H).

We can also use the above procedure to form datasets with a

smaller edge density, while keeping the average degree fixed by

simply patch together c replicates of one of these random datasets,

creating a dataset with c times as many nodes, but the same aver-

age degree. More formally, if a dataset with n nodes has average

degree d and edge density ρ, then the union of c copies of this

dataset has cn nodes, average degree d , and edge density cρ(
(n
2

)
−

n)/(
(nc
2

)
− nc) ≈ ρ/c (for large n). Thus, our simple independent

model spans the two-dimensional feature space in Figs. 2C and 2E.
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Figure 4: Closure probability as a function of the 3-node weighted induced subgraph configuration in the projected graph. The

simplices appearing in the first 80% of the time spanned by the dataset determine the configuration of every triple of nodes

in the projected graph. We measure the probability that 3 nodes appear together in a simplex in the final 20% of timestamped

simplices, conditioned on the prior subgraph configuration. (A) Heat map of simplicial closure probabilities for every 3-node

weighted induced subgraph configuration. The shaded box is the only case with fewer than 20 samples. The four sections of

the heat map correspond to 0, 1, 2, or 3 edges in the induced subgraph. (B–C) Comparison of closure probabilities for pairs

of 3-node configurations from (A) that demonstrate how increasing edge density (B) and tie strength (C) increase simplicial

closure probability. (D) Neither edge density nor tie strength dominates the influence on simplicial closure. Depending on the

dataset, open triangles of all weak ties (the “weak open triangle”) or just two strong ties (the “strong wedge”) are more likely

to close.

process by which nodes form simplices over time. We first exam-

ine triangles, the simplest higher-order structure and then study

larger structures in Section 3.2.

3.1 Simplicial closure on three nodes

Any induced subgraph on three nodes in the weighted projected

graph can change several times before the three nodes appear in

a simplex together (Fig. 3), i.e., simplicially close. We call this the

lifecycle of the triplet of nodes. There are two changes that a triplet

of nodes can undergo during its lifecycle before simplicial closure.

First, an extra edge can be added between two nodes u and v . This

corresponds to an increase in density in this induced subgraph, e.g.,

the introduction of the drug Promacta adds an edge in Fig. 3B. Sec-

ond, projected graph edge weights can increase; we interpret this

as increasing tie strengths. For instance, in Fig. 3C, the tie strength

between Gucci Mane and Young Thug increases after they collab-

orate on “Fell”. To simplify our analysis, we differentiate only be-

tween weak ties with weightWuv = 1 and strong ties correspond-

ing to multiple interactions over time (Wuv ≥ 2). The ties are de-

noted by “1” (weak) and “2+” (strong) in Fig. 3, and there are 11

possible states in a lifecycle (Fig. 3A).

Our prediction tasks will be focused on closure probabilities.

However, to get an impression of the absolute magnitude of those

numbers, we examine the lifecycle of every triple of nodes that

becomes an open or closed triangle in the coauth-MAG-History

dataset (Fig. 3A). In this dataset, a closed triangle is more likely to

have come from a configuration with exactly two strong ties edges

(3,171 cases) than from an open triangle (328 + 779 + 722 + 285 =

2,114 cases). Most closed triangles are formed by nodes that had

no previous interaction (2,732,839 cases), but there are also many

such triples of nodes. We also see that if three nodes form an open

triangle with only weak ties at some point in time, then the three

nodes are much more likely to gain a strong tie before closure (445

cases) than to close directly from that state (328 cases).

We also compute the probability of simplicial closure conditioned

on the state of the three nodes in its lifecycle. We split each of

our datasets based on the temporal order of appearance of the sim-

plices into a training set, consisting of the first 80% of the simplices

(in time) and a test set of the remaining 20% of the simplices. For-

mally, if t∗ is the 80th percentile of the timestamps t1, . . . , tN , then

the training set is the set of timestamped simplices {(Si , ti ) | ti ≤

t∗} and the test set consists of {(Si , ti ) | ti > t∗}. (Our results are

consistent if we predict at different points of time; seeAppendix C.)

We then measured the probability that a node-triple from the train-

ing set will form a closed triangle in the test set as a function of

its previous configuration in the weighted projected graph, i.e., its

lifecycle state in the training data. This gives 10 closure probabil-

ities for each dataset—one for each of the 10 open configurations
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in Fig. 3. Figure 4 summarizes the dependence of simplicial closure

probability on the node set configuration.

We highlight a few important findings. First, simplicial closure

probability typically increases with additional edges (Fig. 4B). In

other words, as the edge density of the subgraph induced by the

three nodes increases, the simplicial closure probability increases.

We formally test this by comparing the closure probability of a

fixed weighted induced subgraph configuration and the same con-

figurationwith an additional unit-weight edge for all suitable cases.

The latter has a statistically significant higher closure probability

in 102 of 113 cases over all datasets and pairs of configurations,

whereas the less dense structure is never significantly more likely

to close (p < 10−5; see Section 3.3 for a more detailed descrip-

tion on the hypothesis tests). (Our goal here is to illustrate gen-

eral trends rather than to find a single statistically significant re-

sult.) This result is consistent with both the theory of social net-

works [22] and empirical studies of social networks [32] on dyadic

link formation. However, many of our datasets are not social net-

works.

Second, the simplicial closure probability typically increases with

tie strength (Fig. 4C). We test the effect of tie strength by compar-

ing the closure probability of a fixed weighted induced subgraph

containing at least one weak tie, and the same configurationwhere

the weak tie is converted to a strong tie. Increasing the tie strength

significantly increases the closure probability in 82 of 113 cases

over all datasets and significantly decreases the closure probabil-

ity in just 6 of 113 cases (p < 10−5). Again, these results are con-

sistent with both theory [22] and empirical studies of social net-

works [3, 30].

However, neither edge density nor tie strength dominates the

influence on simplicial closure (Fig. 4D). In the co-authorship and

Congress datasets, an open triangle comprised of three weak ties,

which we call theweak open triangle is more likely to close than a 3-

node subgraph with just two strong ties, which we call the strong

wedge. The reverse is true for the stack exchange tags and stack

exchange threads datasets. Overall, a weak open triangle is statis-

tically significantly more likely to close than the strong wedge in

4 of 19 datasets, whereas the strong wedge is significantly more

likely to close in 6 of 19 datasets (p < 10−5). These results suggests

different closure dynamics for the different dataset domains. In hu-

man social interactions, simplicial closure appears to be driven by

a topological form of triadic closure: mutual acquaintance between

all the nodes in a set increases the probability of a joint interaction.

In contrast, simplicial closure in the discussion platform networks

resemble transitive closure: once there is a sufficiently strong co-

occurrences of tags, they are likely to be used together later on.

3.2 Simplicial closure on four nodes

We now study simplicial closure on four nodes and again measure

the probability of closure as a function of the 4-node configuration

in the training data. In the case of 3-node simplicial closure, we de-

termined the open configuration in the training set by examining

the three nodes in the the projected graph. Effectively, we exam-

ined how many times each of the three 2-node subsets co-appeared

in a simplex. For 4-node open configurations we proceed analo-

gously, using the corresponding 3-node subsets. Specifically, for a

given set of 4 nodes, every triangle in the projected graph is classi-

fied as either (i) an open simplicial tie, i.e., the triangle is open; (ii)

a weak simplicial tie, meaning that the 3 nodes have appeared in

just one simplex together; or (iii) a strong simplicial tie, meaning

that the three nodes have appeared in at least two simplices to-

gether. In contrast to the 3-node case, these 4-node configurations

are not completely determined by the weighted projected graph,

since the projected graph (as defined) does not contain information

on whether or not 3 nodes induce a closed triangle. Thus, with 4-

node simplices, we make use of additional topological information

provided in our set-valued datasets.

One could also account for the tie strengths of the 2-node sub-

sets (edges) in a 4-node configuration — a complete characteriza-

tion of the possible induced configurations leading to simplicial

closure is much more complex for the 4-node case than the 3-node

case. For an accessible study on the closure patterns of 4-node sim-

plices, we measure the probability of closure with respect to the

27 open configurations where the induced 4-node subgraph in the

projected graph contains at least one triangle. Our classification

distinguishes triangles by tie strength (open, weak, or closed), but

not by edge tie strengths, other than by what is implied by the

triangles.

Analogous to the experiments in Section 3.1, we measure the

probability that a subset of four nodes closes in the test data, con-

ditioned on the open configuration of the same nodes in training

data (Fig. 5A; see Appendix D for efficient algorithms for comput-

ing these probabilities).

We again find that edge density and tie strength increase the

likelihood of simplicial closure. To measure the effect of density,

we compare the closure probability of a configuration consisting

of a fixed number of edges to the closure probability of the same

configuration with an additional edge, keeping the tie strengths

of the triangles fixed (Fig. 5B shows one such comparison). In 180

of 228 applicable comparisons over all datasets, the closure proba-

bility significantly increases with the edge density, and in only 2

cases, the closure probability decreased significantly (p < 10−5).

To measure the effect of simplicial tie strength, we compare the

closure probability of a given configuration to the closure proba-

bility of the same configuration where the simplicial tie strength

of a triangle increases from an open tie to weak tie or from a weak

tie to a strong tie (Fig. 5C shows a case where the strength of a

triangle changes from open to weak). The closure probability sig-

nificantly increases with simplicial tie strength in 26 of 38 cases

for 3-edge configurations, 31 of 38 cases for 4-edge configurations,

77 of 114 cases for 5-edge configurations, and 177 of 359 cases for

6-edge configurations; compared to a significant decrease in clo-

sure probability in just 2 of 38, 1 of 38, 1 of 114, and 4 of 359 cases

(p < 10−5). Therefore, our finding that tie strength is a positive

indicator of simplicial closure between three nodes extends to the

case of four nodes.

Similar to the case of three nodes, there is an ambiguity about

the influence of sparser configurations comprising strong ties and

denser configurations of weak ties. In some datasets, the strong

ties are more indicative of simplicial closure, despite possible spar-

sity of the configuration compared to the closed 4 node simplex; in

other datasets, the density is more indicative. To illustrate this ten-

sion, we compare the closure probability of the open configuration

7



Figure 5: Simplicial closure probability as a function of the 4-node open configuration.We use the first 80% of the timestamped

data to determine the configuration of every 4-node set that contains at least 1 triangle and does not appear in a simplex. We

then compute the probability that a 4-node set appears in a simplex in the final 20% of the data, conditioned on the open

configuration. In an open configuration, there are three types of simplicial tie strengths for a triangle—open,weak, and strong—

given by the number of times the three nodes in the triangle have co-appeared in a simplex (zero, one, or at least two times).

(A) Heat map of simplicial closure probabilities as a function of open 4-node configuration. Shaded boxes are configurations

that appear 20 or fewer times in the first 80% of the data. We illustrate each subgraph configuration on the x-axis with a

projection of the simplex onto two dimensions (top line—the unfilled circle represents the same node) as well as a tetrahedral

three-dimensional perspective figure (bottom line). The four sections of the heat map correspond to 3, 4, 5, or 6 edges in the

configuration. (B–C) Comparison of closure probabilities for pairs of 4-node configurations that demonstrate how increasing

edge density (B) and simplicial tie strength (C) lead to higher probability of simplicial closure. (D) Similar to the case of open

3-node configurations (Fig. 4D), in some datasets, open configurationswith a smaller number of strong simplicial ties aremore

likely to close than open configurations with a larger number of weak simplicial ties; in other datasets, the opposite is true.

Here, we compare the “strong flap” configuration (y-axis) to the “weak wireframe” configuration (x-axis).

with 5 edges and 2 strong simplicial ties, which we call the strong

flap, to the open configuration with 6 edges and 3 weak simplicial

ties, which we call the weak wireframe (Fig. 5D). The closure prob-

ability of the strong flap is significantly more likely to close in 4

of 19 datasets, whereas the weak wireframe is significantly more

likely to close in 5 of 19 datasets. In the remaining 10 datasets, nei-

ther closure probability was significantly higher (p < 10−5).

Our observations about the relative importance of tie strength

versus tie density (relative to the assesed simplex), translates across

the dimensions of the simplices. In three of the five datasets for

which the wireframe is significantly more likely to close, the weak

open triangle is also significantlymore likely to close (coauth-DBLP,

coauth-MAG-Geology, congress-bills). And in three of the four datasets

for which the strong flap is significantly more more likely than

the weak wireframe configuration to close, the strong wedge is

also more likely to close than the weak open triangle (tags-stack-

overflow, tags-math-sx, tags-ask-ubuntu). Moreover, there were no

datasets for which tie strength was significantly more indicative

of simplicial closure for one simplex size and density was more

important for another. This provides additional evidence for sim-

plicial closure governing mechanisms, as discussed in Section 3.1 —

closure is more “topological” in human social networks and more

“transitive” in discussion platform tags.

3.3 Details on hypothesis tests

Let us assign labels c = 1, 2, . . . , 10 to the open 3-node configu-

rations, corresponding to the 10 configurations from left to right

along the x-axis of Fig. 4A (see Table 6). We denote by nc the in-

stances of an open configuration c in the training data, and use

xc to denote the number of those instance that close in the test

set. For a pair of configurations c1 and c2, we can use a one-sided
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hypothesis test for xc1/nc1 < xc2/nc2 . We use Fisher’s exact test

when the maximum of xc1 and xc2 is less than 5; otherwise, we

use a one-sample z-test. The edge density tests compared config-

uration pairs c1-c2 equal to 1-2, 2-4, 3-5, 4-7, 5-8, and 6-9. The tie

strength tests compared configuration pairs 2-3, 4-5, 5-6, 7-8, 8-9,

and 9-10.

Similarly, we label the open 4-node configurations c = 1, 2, . . . , 27,

corresponding to the 27 configurations from left to right along the

x-axis of Fig. 5A (again, see Table 6). The edge density tests com-

pared configuration pairs 1-4, 2-5, 3-6, 4-7, 5-8, 6-9, 7-13, 8-14, 9-15,

10-16, 11-17, and 12-18. The tie strength tests compared configura-

tion pairs 1-2 and 2-3 for 3-edge configurations; 4-5 and 5-6 for

4-edge configurations; 7-8, 8-9, 10-11, 11-12, 8-10, and 9-11 for 5-

edge configurations; and 13-14, 14-15, 16-17, 17-18, 19-20, 20-21,

21-22, 23-24, 24-25, 25-26, 26-27, 14-16, 15-17, 16-19, 17-20, 18-21,

19-23, 20-24, 21-25, and 22-26 for 6-edge configurations.

4 EVALUATION FOR HIGHER-ORDER LINK
PREDICTION

Up to this point, we have studied simplicial closure in aggregate

and found that edge density and tie strength are significant posi-

tive indicators for simplicial closure. We now evaluate algorithms

for higher-order link prediction that predict candidate sets of nodes

for simplicial closure. For simplicity of presentation and scalability

reasons, we focus on predicting simplicial closure of node-triplets.

Thus, the higher-order link prediction problem considered here is

predicting which node-triplets that have not co-appeared in a sim-

plex together yet will be a subset of a single simplex in the future.

Our results in Section 3.1 suggest that open triangles or node-

triplets with strong ties are the most likely to close in the future.

For our experiments, we focus on predicting which open triangles

in the training data simplicially close in the test data. By focusing

on the prediction of open triangles, it is feasible to enumerate all

open structures upon which the algorithms will make a prediction,

using only modest computational resources. Thus, we avoid a com-

mon problem in link prediction of how to pare down an enormous

candidate set of potential links, which itself is an active research

topic [6, 58].

4.1 Algorithms

Inspired by classical work on link prediction, we develop several

algorithms that assign a score to every open triangle; sorting by

these scores induces a ranking of the open triangles corresponding

to the algorithm’s confidence that each given open triangle will

close. More formally, each algorithm defines a score function s : V×

V × V → R, where s(i, j,k) > s(a,b, c) means that the candidate

node-triplet {i, j,k} is predicted to be more likely to co-appear in

a simplex in the future than {a,b, c}. Most of the score functions

are valid for any triple of nodes, so it is convenient to write s as a

function on triples of vertices, rather than just on open triangles.

The ordering of the triples induced by the score function will be

sufficient for our evaluation in Section 4.2.

We consider score functions in four broad categories (see Ap-

pendix E for a complete description). In the first category, s(i, j,k)

depends only on the weights of the edges of the triangle in the

projected graph. Specifically, we consider the harmonic, geometric,

and arithmetic means of the edge weights, which has the property

that stronger ties lead to larger scores. These score functions cap-

ture our finding that tie strength is a positive indicator of simplicial

closure.

The second category of score functions is based on local neigh-

borhood features in the projected graph such as the commonneigh-

bors of nodes i , j, and k . Three score functions in this category

use the number of common fourth neighbors of the 3 nodes in

the projected graph with (possible) normalization given by gen-

eralizations of the Jaccard similarity or Adamic-Adar similarity [1,

34]. These methods are direct generalizations of score functions

used for dyadic link prediction [34]. We also evaluate two score

functions inspired by preferential attachment, which has been sug-

gested as a growth mechanism of co-authorship networks [7, 42].

These score functions are given by the product of the number of

neighbors in the projected graph of the three nodes or the prod-

uct of the number of simplices in which each of the three nodes

appear.

The third category of score functions is based on paths and

random walks, a successful methodology for dyadic link predic-

tion [34].We computepairwise similarities between nodes forweighted

and unweighted Katz similarity and personalized PageRank simi-

larity. The score is then the sum of the pairwise scores between

the three nodes. We also use a recent generalization of person-

alized PageRank that accounts for higher-order structure using

ideas from computational topology [27], which we call simplicial

PageRank. This method computes pairwise similarity scores be-

tween edges, and the score function is the sum of the pairwise

scores between the edges in an open triangle. This method is also

the most computationally expensive and did not complete for two

of the datasets within 2 weeks of computation time. The similarity

scores can be further decomposed into three components based on

the Hodge decomposition [35], which can have a substantial effect

on the prediction performance (see Appendix E).

The final category of score function uses a supervised learning

approach by automatically learning the importance of several fea-

tures derived from the other score functions. More specifically, we

train a regularized logistic regression model using 26 features of

the triple of nodes (see Appendix E), and the score function is the

probability of simplicial closure given by the model on the test set.

While there are many methods for feature-based supervised learn-

ing, we found logistic regression to work well in practice, and we

show that the supervised approach is competitive with (and often

out-performs) the methods described above.

4.2 Prediction performance

Using the ranking induced by the score functions described above,

we evaluated the prediction performance on each dataset by the

area under the precision-recall curve (AUC-PR) metric (Table 2).

AUC-PR is particularly appropriate for prediction problems with

class imbalance [15], which is the case for our datasets (Fig. 4). We

use random scores — more specifically, a random ranking — as

a baseline. The baseline prediction performance with respect to

AUC-PR is the proportion of open triangles in the training set that

simplicially close in the test set.
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Table 2: Open triangle closure prediction performance based on several score functions: random (Rand.); harmonic, geometric,

and arithmetic means of the 3 edge weights (Eqs. (19) to (21)); 3-way common neighbors (Common, Eq. (22)); 3-way Jaccard

coefficient (Jaccard, Eq. (23)); 3-way Adamic-Adar (A-A, Eq. (24)); projected graph degree and simplicial degree preferential at-

tachment (PGD-PA, Eq. (25) and SD-PA, Eq. (25)); unweighted and weighted Katz similarity (Katz, Eq. (29) andW-Katz, Eq. (30));

unweighted and weighted personalized PageRank (U-PPR, Eq. (34) and W-PPR, Eq. (35)); simplicial personalized PageRank

(S-PPR, Eq. (42); the two missing entries are cases where computations did not finish within 2 weeks); and a feature-based su-

pervisedmethod logistic regression (Log. reg.). Performance is AUC-PR relative to the random baseline. The random baseline

is listed in absolute terms and equals the fraction of open triangles that close.

Dataset Rand. Harm. mean Geom. mean Arith. mean Common Jaccard A-A PGD-PA SD-PA U-Katz W-Katz U-PPR W-PPR S-PPR Log. reg.

coauth-DBLP 1.68e-03 1.49 1.59 1.50 1.33 1.84 1.60 0.74 0.74 0.97 1.51 1.62 1.83 1.21 3.37

coauth-MAG-History 7.16e-04 1.69 2.72 3.20 5.11 2.24 5.82 1.50 2.49 6.30 3.40 1.66 1.88 1.35 6.75

coauth-MAG-Geology 3.35e-03 2.01 1.97 1.69 2.43 1.84 2.71 1.31 0.97 1.99 1.74 1.06 1.26 0.94 4.74

music-rap-genius 6.82e-04 5.44 6.92 1.98 1.85 1.62 2.10 1.82 2.15 1.93 2.00 1.78 2.09 1.39 2.67

tags-stack-overflow 1.84e-04 13.08 10.42 3.97 6.45 9.43 6.63 3.37 2.74 2.95 3.60 1.08 1.85 – 3.37

tags-math-sx 1.08e-03 9.08 8.67 2.88 6.19 9.37 6.34 3.48 2.81 4.53 2.71 1.19 1.55 1.86 13.99

tags-ask-ubuntu 1.08e-03 12.29 12.64 4.24 7.15 4.96 7.51 7.48 5.63 7.10 4.15 1.75 2.54 1.19 7.48

threads-stack-overflow 1.14e-05 23.85 31.12 12.97 2.73 3.85 3.19 5.20 3.89 1.06 11.54 1.66 4.06 – 1.53

threads-math-sx 5.63e-05 20.86 16.01 5.03 25.08 28.13 23.32 10.46 7.46 11.04 4.86 0.90 1.18 0.61 47.18

threads-ask-ubuntu 1.31e-04 78.12 80.94 29.00 21.04 2.80 30.82 7.09 6.62 16.63 32.31 0.94 1.51 1.78 9.82

NDC-substances 1.17e-03 4.90 5.27 2.90 5.92 3.36 5.97 4.76 4.46 5.35 2.93 1.39 1.83 1.86 8.17

NDC-classes 6.72e-03 4.43 3.38 1.82 1.27 1.19 0.99 0.94 2.14 0.92 1.34 0.78 0.91 2.45 0.62

DAWN 8.47e-03 4.43 3.86 2.13 4.73 3.76 4.77 3.76 1.45 4.61 2.04 1.57 1.37 1.55 2.86

congress-committees 6.99e-04 3.59 3.28 2.48 4.83 2.49 5.04 1.06 1.31 3.21 2.59 1.50 3.89 2.13 7.67

congress-bills 1.71e-04 0.93 0.90 0.88 0.65 1.23 0.66 0.60 0.55 0.60 0.78 3.16 1.07 6.01 107.19

email-Enron 1.40e-02 1.78 1.62 1.33 0.85 0.83 0.87 1.27 0.83 0.99 1.28 3.69 3.16 2.02 0.72

email-Eu 5.34e-03 1.98 2.15 1.78 1.28 2.69 1.37 0.88 1.55 1.01 1.79 1.59 1.75 1.26 3.47

contact-high-school 2.47e-03 3.86 4.16 2.54 1.92 3.61 2.00 0.96 1.13 1.72 2.53 1.39 2.41 0.78 2.86

contact-primary-school 2.59e-03 5.63 6.40 3.96 2.98 2.95 3.21 0.92 0.94 1.63 4.02 1.41 4.31 0.93 6.91

Our proposed algorithms can achieve much higher performance

than randomly guessing open triangles to simplicially close (Ta-

ble 2). As is the case with standard dyadic link prediction, there is

not one score function that performs best over all datasets [34, 36];

however, we note some general trends.

First, the simple harmonic and geometric means of edge weights

performs well in many datasets, which further highlights the im-

portance of tie strength in predicting simplicial closure. The effec-

tiveness of these purely local measures contrasts with the tradi-

tional dyadic link prediction problem, where accounting for long

path lengths using, e.g., personalized PageRank scores are more

successful. This suggests that the higher-order link prediction prob-

lem has fundamentally different structure than traditional link pre-

diction [34].

Surprisingly, the arithmeticmean performs theworst of the three

means in all but one dataset (coauth-MAG-History). We further

study the performance of these measures using the generalized

mean with parameter p as score functions:

sp (i, j,k) = [(W
p
i j +W

p

jk
+W

p

ik
)/3]1/p , (3)

whereWab is the weight between nodes a and b in the projected

graph. The harmonic, arithmetic, and geometric means are the spe-

cial cases where p = −1, p = 1, and the limit p → 0.

Generally, prediction performance is (i) unimodal in p, (ii) max-

imized for p ∈ [−1, 0], and (iii) better for p < −1 than for p > 1

(Fig. 6). Two exceptions are the NDC classes dataset, where the

maximum is achieved for p < −1, and the History co-authorship

dataset, where p is maximized near 0.5 and performance is better

music-rap-genius

NDC-substances

NDC-classes

DAWN

coauth-DBLP

coauth-MAG-geology

coauth-MAG-history

congress-bills

congress-committees

tags-stack-overflow

tags-math-sx

tags-ask-ubuntu

email-Eu

email-Enron

threads-stack-overflow

threads-math-sx

threads-ask-ubuntu

contact-high-school

contact-primary-school

harmonic geometric arithmetic

p
4 3 2 1 0 1 2 3 4

0

20

40

60

80

R
e
la

ti
v
e
 p

e
rf

o
rm

a
n
c
e

4 3 2 1 0 1 2 3 4
p

2.5

5.0

7.5

10.0

12.5

R
e
la

ti
v
e
 p

e
rf

o
rm

a
n
c
e

4 3 2 1 0 1 2 3 4
p

1.0

1.5

2.0

2.5

3.0

3.5

R
e
la

ti
v
e
 p

e
rf

o
rm

a
n
c
e

Figure 6: AUC-PR relative to random predictions as a func-

tion of the parameter p in the generalized mean score func-

tion (Eq. (3)).

for larger values of p than smaller ones. In the former case, the

dataset has the unique property that no open triangles with exactly

one strong tie close (Fig. 4). Thus, it makes sense that smaller p per-

form better, as smaller p account relatively more for the minimum

edge weight value (limp→−∞ sp (i, j,k) = min(Wi j ,Wjk ,Wik )). In

the latter case, history co-authorship has the lowest average degree

in the projected graph of all datasets by far (Fig. 2D). Therefore,

only a single strong edge may be providing the signal for closure,
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forwhich largerpwould be a better score function (limp→+∞ sp (i, j,k) =

max(Wi j ,Wjk ,Wik )).

Next, the supervised learning approach also performswell broadly,

especially in the larger datasets such as the co-authorship datasets,

which have sufficient training data to learn a good model. This ap-

proach on the congress-bills dataset provides extremely good per-

formance. Here, the supervisedmethod captures an interesting fea-

ture of this dataset that nodes with small degree and appearing in

few simplices are more likely to simplicially close. In fact, the neg-

ative of the simple preferential attachment score functions based

on projected graph degree and simplicial degree perform over 10

and 20 times better than the random baseline.

Finally, there are similar improvements over the baseline for

each type of dataset. Several score functions provide substantial im-

provements over the baseline for datasets built from tags or threads

on stack exchange sites but only modest improvements for the

email and co-authorship datasets.

5 DISCUSSION

There is a rich history of modeling network data with graphs. This

pairwise paradigm has been successful, even though many net-

work datasets carry natural higher-order structure that is not cap-

tured by a graph. One reason for the discrepancy is a lack of eval-

uation frameworks for higher-order network models. Our work

fills this gap by considering a higher-order link prediction problem

on the evolution of higher-order network structure: determining

which groups of nodes will interact simultaneously in the future,

given that they have not done so already. In addition, higher-order

link prediction is a tool immediately applicable to domain applica-

tions.

We find rich variety in our datasets in terms of the fraction

of open triangles and structural properties of the projected graph

such as edge density and average degree, although datasets from

the same domain tend to have similar structure. Prior research has

identified the distinction between open and closed triangles when

projecting bipartite networks onto one mode [11, 44, 45], but has

not studied the prediction of simplicial closure of the open trian-

gles. Patania et al. measured the fraction of triangles that are open

in co-authorship networks [50]; our results are consistent but il-

luminate that open triangles may be extremely common in other

domains.

We also find that principles from the temporal network evo-

lution continue to hold when looking at higher-order structure,

namely, edge density and tie strength are positive indicators of sim-

plicial closure for both 3- and 4-node simplices. However, there is

tension between these features — themore influential one depends

on the dataset domain, suggesting different mechanisms for simpli-

cial closure. We use these principles to develop effective methods

for higher-order link prediction. Local measures that only account

for the tie strength between nodes in an open triangle performwell,

which differs from traditional link prediction where long paths are

important [34]. This suggests that higher-order temporal evolution

is fundamentally different than traditional network evolution.

Higher-order modeling also opens the door to new methods in

network science. For example, we employed ideas from computa-

tional topology, a field with recent success in data analysis [13]

that directly studies higher-order structure. While much prior re-

search in topological data analysis focuses on persistent homology

(which is largely orthogonal to the concepts in ourwork), there are

several recent ideas connecting random walks and simplicial com-

plexes [27, 40, 49, 60]. As we have seen, our higher-order link pre-

diction problem provides a framework for evaluating such ideas

on a concrete task.

Analyzing larger simplices brings several challenges, specifically

in interpretability of results and in computational scalability. The

space of open 4-node configurations containing at least one trian-

gle (Fig. 5A) is already much more complex than the space of open

3-node configurations (Fig. 4A). Comprehending and evaluating

the large space of 5-node configurations is difficult. The simplicial

PageRank method is already computationally taxing for the two

largest datasets we studied.We expect that randomized algorithms

providing an approximate solution with less computation will be

useful for this task. Regardless, the computational challenges bring

exciting avenues for future research.

Software for simplicial closure, higher-order link prediction, and

reproducing the results in this paper are available at

https://github.com/arbenson/ScHoLP-Tutorial .
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A DATASET DESCRIPTIONS

Here we provide a more complete description of the datasets used

in the main text. All datasets except the U.S. congress committee

membership and music collaboration datasets are available at

http://www.cs.cornell.edu/~arb/data/ .

Co-authorship. In these datasets, the nodes correspond to authors,

and each simplex represents the authors on a scientific publica-

tion. The timestamp is the year of publication.We analyze three co-

authorship networks—one derived fromDBLP, an online bibliogra-

phy for computer science, and two derived from theMicrosoft Aca-

demic Graph. We used the September 3, 2017 release of DBLP2 and

the MAG version released with the Open Academic Graph3 [59].

We constructed two field-specific datasets by filtering the data ac-

cording to keywords in the “field of study” information. One dataset

consisted of all papers with “History” as a field of study and the

other all papers with “Geology” as a field of study.

Stack exchange tags. Stack exchange is a collection of question-and-

answer web sites.4 Users post questions and may annotate each

question with up to 5 tags that specify topic areas spanned by the

question. We derive tag networks where nodes correspond to tags

and each simplex represents the tags on a question. The timestamp

for a simplex is the time that the question was posted on the web

site. We derived three datasets corresponding to three stack ex-

change web sites:

(1) https://stackoverflow.com ,

(2) https://math.stackexchange.com , and

(3) https://askubuntu.com

. The raw data was downloaded from the Stack Exchange data

dump5 (downloaded September 20, 2017), which contains the en-

tire history of the content on the stack exchange web sites.

Stack exchange threads. We also formed user interaction datasets

from the stack exchange web sites. Users post answers to questions,

creating a question-and-answer “thread.” We constructed datasets

where the nodes are users and simplices correspond to the users

asking a question or posting an answer on a single thread. We

only considered threads where the question and all answers were

posted within 24 hours. The timestamps of the simplices are the

times that the question was posted.

National Drug Code Directory (NDC). Under the Drug Listing Act

of 1972, the U.S. Food and Drug Administration releases informa-

tion on all commercial drugs going through the regulation of the

agency. We constructed two datasets from this data where sim-

plices correspond to drugs. In one, the nodes are classification la-

bels (e.g., serotonin reuptake inhibitor), and simplices are comprised

of all labels applied to a drug; in the other, the nodes are sub-

stances (e.g., testosterone) and simplices are constructed from all

substances in a drug. In both derived datasets, the timestamps are

the days when the drugs were first marketed.

United States Congress.We derived two datasets from political net-

works, where the nodes are congresspersons in the U.S. congress.

In the first, simplices represent all members of committees and

sub-committees in the House of Representatives (Congresses 101

2http://dblp.org/xml/release/
3https://www.openacademic.ai/oag/
4https://stackexchange.com
5https://archive.org/details/stackexchange

to 107, from 1989 to 2003), and the timestamp of the simplex is the

year that the committee formed [53, 54]. In the second dataset, sim-

plices are comprised of the sponsor and co-sponsors of legislative

bills put forth in both the House of Representatives and the Sen-

ate [19, 20], and the timestamps are the days that the bills were

introduced.

Email. In email communication, messages can be sent to multiple

recipients. We analyze two email datasets—one from communica-

tion between Enron employees [29] and the other from a Euro-

pean research institution [48]. In both datasets, nodes are email

addresses. In the Enron dataset, a simplex consists of the sender

and all recipients of the email. The data source for the European

research institution only contains (sender, receiver, timestamp) tu-

ples, where timestamps are recorded at 1-second resolution [48].

Simplices consist of a sender and all receivers such that the email

between the two has the same timestamp.

Human contact.The human contact networks are constructed from

interactions recorded by wearable sensors in a high school [37]

and a primary school [61]. The sensors record proximity-based

contacts every 20 seconds. We construct a graph for each interval,

where nodes i and j are connected if they are in contact during the

interval. We then consider simplices to be all maximal cliques in

the graph at each time interval.

DAWN. The Drug Abuse Warning Network (DAWN) is a national

health surveillance system that records drug use contributing to

hospital emergency department visits throughout the United States.

Simplices in our dataset are the drugs used by a patient (as reported

by the patient) in an emergency department visit. The drugs in-

clude illicit substances, prescription and over-the-counter medica-

tion, and dietary supplements. Timestamps of visits are recorded

at the resolution of quarter-years, spanning a total duration of 8

years. For a period of time, the recording system only recorded the

first 16 drugs reported by a patient, so we only use (at most) the

first 16 drugs reported by a patient for the entire dataset.

Music collaboration.Musical artists often collaborate on individual

songs. We derive a dataset where nodes are artists and a simplex

consists of all artists collaborating on a song. The songs were ob-

tained from a web crawl of the genius.com music lyrics web site6.

We consider the collaborating artists to be the lead artist along

with any “featured” artists (this excludes some cases where lyrics

from an artist are included but that artist is not listed as a featured

artist). The timestamps are the release dates of the song. We only

collected data from songs that contain the “rap” tag on the web site

and discarded songs without a specified release date. The crawler

ran for several days and collected over 500,000 songs.

6https://genius.com/
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B TEMPORAL ASYNCHRONICITY AND OPEN
TRIANGLES

Our datasets contain temporal dynamics, so edges may only be “ac-

tive” for certain periods in the overall timespan of the dataset. This

provides one plausible explanation for the formation of open tri-

angles. For example, in co-authorship networks, an open triangle

may arise when three separate collaborations occurred in disjoint

time periods. To investigate the importance of such effects, we ana-

lyze the asynchronicity in open triangles in our datasets.We define

the “active interval” of an edge in the projected graph to be the in-

terval bounded by the earliest and latest timestamps of simplices

containing the two nodes in the edge. Recall that our datasets are

defined by a collection of timestamped simplices {(Si , ti )}, where

each Si ⊂ V is the simplex and each ti ∈ R is a timestamp. The

active interval of an edge (u,v) is then

Iu,v = [min{ti | u,v ∈ Si }, max{ti | u,v ∈ Si }]. (4)

For each open triangle in each dataset, we compute the number

of pairwise overlapping active intervals amongst the three edges

in the triangle (Table 3). In the majority of cases, all three pairs

of intervals overlap. By Helly’s theorem, this implies that most of

the time, there is an interval of time for which all three edges are

simultaneously active. Stated differently, in the co-authorship ex-

ample, the collaborators could have theoretically formed a closed

triangle during this time period, but they did not.We conclude that

temporal asynchronicity is not a major reason for the presence of

open triangles in our datasets.

Table 3: Temporal asynchronicity and open triangles. For

each open triangle in each dataset, we find the number of

overlaps between the active intervals of the three edges,

where an active interval of an edge has end points given by

the earliest and latest timestamps of simplices containing

the two nodes in the edges (Eq. (4)). The edges in most open

triangles have three pairwise overlapping intervals. In these

cases, there is a timeperiodwhere all three edgeswere simul-

taneously active by Helly’s theorem.

# overlaps

Dataset # open triangles 0 1 2 3

coauth-DBLP 1,295,214 0.012 0.143 0.123 0.722

coauth-MAG-history 96,420 0.002 0.055 0.059 0.884

coauth-MAG-geology 2,494,960 0.010 0.128 0.109 0.753

tags-stack-overflow 300,646,440 0.002 0.067 0.071 0.860

tags-math-sx 2,666,353 0.001 0.040 0.049 0.910

tags-ask-ubuntu 3,288,058 0.002 0.088 0.085 0.825

threads-stack-overflow 99,027,304 0.001 0.034 0.037 0.929

threads-math-sx 11,294,665 0.001 0.038 0.039 0.922

threads-ask-ubuntu 136,374 0.000 0.020 0.023 0.957

NDC-substances 1,136,357 0.020 0.196 0.151 0.633

NDC-classes 9,064 0.022 0.191 0.136 0.652

DAWN 5,682,552 0.027 0.216 0.155 0.602

congress-committees 190,054 0.001 0.046 0.058 0.895

congress-bills 44,857,465 0.003 0.063 0.113 0.821

email-Enron 3,317 0.008 0.130 0.151 0.711

email-Eu 234,600 0.010 0.131 0.132 0.727

contact-high-school 31,850 0.000 0.015 0.019 0.966

contact-primary-school 98,621 0.000 0.012 0.014 0.974

music-rap-genius 70,057 0.028 0.221 0.141 0.611

15



C SIMPLICIAL CLOSURE AT DIFFERENT
POINTS IN TIME

In the main text, we studied simplicial closure by counting the 3-

node and 4-node configuration patterns in the first 80% of times-

tamped simplices and thenmeasuring the fraction of instances that

simplicially close in the final 20% of timestamped simplices. Here,

we show that our results are robust when examining different time

slices of the data. We first filtered each dataset to contain only the

first X% of timestamped simplices, for X = 40, 60, 80. (The original

dataset is the case of X = 100.) We then split the filtered dataset

into the first 80% and last 20% of timestamped simplices (within the

time frame of the filtered dataset) and computed simplicial closure

probabilities.

Table 5 lists the 3-node simplicial closure probabilities as a func-

tion of the configuration of the 3 nodes in the first 80% of the data

for X = 40, 60, 80, 100. Broadly, the closure probabilities remain

similar for different values of X . We also find that edge density

and tie strength are always positive indicators of simplicial clo-

sure (Table 4), regardless of X . Thus, these features are important

for simplicial closure throughout the time spanned by the datasets.

The tension between these features is also consistent over time.

The weak open triangle (where all three edges are weak ties) is

more likely to close than the strong wedge (the 3-node configu-

ration with exactly two strong ties) in the coauth-DBLP, coauth-

MAG-Geology, and congress-bills datasets for all values of X as

well as in the congress-committees dataset for X = 60, 80, 100. On

the other hand, the strongwedge is more likely to close in the three

stack exchange tags networks, DAWN, and threads-stack-overflow

for all values of X as well as in threads-math-sx for X = 80, 100.

Table 4: Robustness in dependence of tie strength and edge

density in 3-node configurations at different time slices of

the data. For edge density, we tested whether or not the clo-

sure probability of a fixed weighted induced subgraph con-

figuration and the same configuration with an additional

unit-weight edge significantly increases or decreases the clo-

sure probability (at significance level 10−5). For tie strength,

we tested whether the closure probability significantly in-

creases or decreases when comparing a fixed weighted in-

duced subgraph containing at least one weak tie, and the

same configuration where the weak tie is converted to a

strong tie (edgeweight at least 2 in the projected graph). The

“total" column is the number of tested hypotheses. We ap-

ply the tests to filtered datasets that only contain the first

X% of timestamped simplices (in time order). We also only

consider cases where the configuration has at least 25 sam-

ples in the first 80% of timestamped simplices of a filtered

dataset. Increasing either edge density or tie strength signif-

icantly increases the closure probability for all values of X ,

suggesting that these features are positive indicators of sim-

plicial closure over time.

edge density increases tie strength increases

sig. incr. sig. decr. total sig. incr. sig. decr. total

X%

40 89 0 113 71 2 113

60 101 0 113 80 7 113

80 102 0 113 86 2 113

100 96 0 107 76 6 107
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Table 5: Closure probabilities of different configurations at different points in time.We first filtered each dataset to contain only the firstX% of timestamped

simplices, for X = 40, 60, 80, 100. We then split the filtered dataset into the first 80% and last 20% of timestamped simplices (within the time frame of the

filtered dataset). We record the probability of closure in last 20% conditioned on the open configuration in the first 80%.

1 2+ 1 1 1

2+ 2+

2+

40 60 80 100 40 60 80 100 40 60 80 100 40 60 80 100 40 60 80 100 40 60 80 100

coauth-DBLP 8.2e-13 1.2e-12 8.3e-13 9.3e-13 3.1e-08 4.2e-08 3.4e-08 3.6e-08 1.1e-07 1.5e-07 1.2e-07 1.3e-07 4.4e-04 5.2e-04 3.8e-04 3.5e-04 9.7e-04 1.2e-03 9.4e-04 8.8e-04 2.0e-03 2.5e-03 2.2e-03 2.1e-03

coauth-MAG-Geology 7.9e-12 5.0e-12 3.2e-12 4.2e-12 1.1e-07 9.9e-08 7.6e-08 8.9e-08 4.1e-07 4.6e-07 3.6e-07 4.5e-07 5.8e-04 6.8e-04 5.1e-04 5.3e-04 1.4e-03 1.8e-03 1.5e-03 1.6e-03 3.0e-03 4.4e-03 3.7e-03 4.1e-03

coauth-MAG-History 1.2e-12 8.8e-13 3.3e-13 1.8e-13 2.7e-08 2.0e-08 1.0e-08 5.6e-09 1.6e-07 1.4e-07 6.3e-08 3.9e-08 1.4e-04 1.8e-04 1.0e-04 6.3e-05 6.2e-04 8.5e-04 4.1e-04 2.9e-04 1.3e-03 2.3e-03 2.5e-03 1.0e-03

music-rap-genius 1.6e-09 8.6e-10 4.3e-10 1.2e-10 1.3e-06 6.2e-07 5.7e-07 2.3e-07 5.5e-06 2.9e-06 1.9e-06 1.1e-06 3.3e-04 2.2e-04 2.2e-04 1.3e-04 1.0e-03 8.0e-04 5.6e-04 4.4e-04 3.3e-03 2.9e-03 1.7e-03 1.3e-03

tags-stack-overflow 3.6e-09 3.5e-09 2.9e-09 2.8e-09 4.8e-07 4.5e-07 3.8e-07 3.8e-07 5.0e-06 4.6e-06 4.2e-06 4.2e-06 9.6e-06 8.5e-06 7.4e-06 7.4e-06 6.9e-05 6.3e-05 5.8e-05 5.7e-05 4.6e-04 4.1e-04 3.8e-04 3.7e-04

tags-math-sx 1.0e-06 1.4e-06 1.9e-06 1.9e-06 1.7e-05 1.7e-05 1.9e-05 2.1e-05 1.1e-04 1.1e-04 1.5e-04 1.4e-04 1.3e-04 1.2e-04 1.3e-04 1.2e-04 7.0e-04 7.0e-04 7.2e-04 6.9e-04 3.4e-03 3.3e-03 3.4e-03 3.2e-03

tags-ask-ubuntu 4.9e-07 5.4e-07 7.9e-07 4.8e-07 1.1e-05 1.3e-05 1.4e-05 9.8e-06 8.1e-05 9.7e-05 1.1e-04 7.9e-05 9.4e-05 8.8e-05 8.6e-05 6.2e-05 4.8e-04 4.6e-04 4.7e-04 3.8e-04 1.5e-03 1.6e-03 1.5e-03 1.4e-03

threads-stack-overflow 3.2e-12 8.4e-13 4.3e-13 2.2e-13 5.5e-09 2.2e-09 1.4e-09 9.0e-10 8.4e-08 4.2e-08 2.7e-08 2.1e-08 6.4e-07 3.3e-07 2.5e-07 1.9e-07 4.8e-06 3.0e-06 2.3e-06 2.0e-06 2.5e-05 1.7e-05 1.5e-05 1.5e-05

threads-math-sx 2.3e-10 1.4e-10 6.4e-11 4.2e-11 1.5e-07 1.3e-07 7.8e-08 6.0e-08 1.2e-06 1.3e-06 9.4e-07 7.4e-07 3.6e-06 3.8e-06 2.5e-06 2.3e-06 1.6e-05 2.0e-05 1.7e-05 1.5e-05 6.4e-05 8.9e-05 9.0e-05 7.9e-05

threads-ask-ubuntu 5.3e-11 1.4e-11 5.3e-12 3.2e-12 2.8e-08 2.1e-08 1.2e-08 9.0e-09 5.7e-07 5.2e-07 5.7e-07 4.1e-07 1.7e-06 5.6e-07 7.7e-07 7.8e-07 1.6e-05 1.4e-05 1.8e-05 1.6e-05 6.8e-05 1.0e-04 1.6e-04 1.4e-04

NDC-substances 1.4e-06 3.4e-06 9.6e-07 3.8e-07 1.1e-04 1.9e-04 7.5e-05 3.3e-05 1.9e-04 4.2e-04 1.9e-04 7.8e-05 2.5e-03 2.9e-03 1.4e-03 4.8e-04 6.0e-03 6.0e-03 3.2e-03 1.1e-03 1.0e-02 1.2e-02 6.7e-03 2.2e-03

NDC-classes 5.3e-07 9.0e-06 1.5e-06 8.4e-07 3.7e-06 8.8e-04 1.7e-04 3.1e-04 3.6e-04 1.8e-03 7.7e-04 3.4e-04 0.0e+00 4.0e-02 0.0e+00 4.8e-03 0.0e+00 7.1e-02 3.0e-03 4.8e-03 9.1e-03 5.4e-02 2.4e-02 1.1e-02

DAWN 1.5e-06 2.1e-06 2.7e-06 2.5e-06 4.2e-05 4.6e-05 6.0e-05 5.4e-05 2.1e-04 2.7e-04 3.5e-04 3.4e-04 3.4e-04 3.9e-04 4.7e-04 4.1e-04 1.6e-03 1.8e-03 2.2e-03 2.1e-03 5.2e-03 6.3e-03 7.6e-03 7.3e-03

congress-bills 1.9e-04 9.2e-04 3.0e-04 2.5e-04 7.6e-04 3.0e-03 1.2e-03 1.3e-03 9.9e-04 2.4e-03 1.2e-03 9.1e-04 4.2e-03 1.2e-02 5.4e-03 8.1e-03 5.4e-03 1.0e-02 5.2e-03 6.1e-03 5.0e-03 7.2e-03 3.4e-03 3.8e-03

congress-committees 0.0e+00 1.5e-04 3.7e-05 5.8e-05 0.0e+00 6.7e-04 2.9e-04 3.6e-04 0.0e+00 9.9e-04 5.7e-04 6.3e-04 0.0e+00 2.4e-03 1.5e-03 1.7e-03 0.0e+00 3.2e-03 2.2e-03 2.1e-03 0.0e+00 3.4e-03 3.0e-03 3.1e-03

email-Eu 8.2e-06 1.5e-05 1.4e-05 8.4e-06 1.3e-04 1.8e-04 1.4e-04 8.3e-05 3.3e-04 3.6e-04 5.0e-04 2.4e-04 1.7e-03 1.1e-03 1.2e-03 1.0e-03 3.6e-03 3.3e-03 3.9e-03 2.4e-03 7.8e-03 6.4e-03 8.1e-03 5.2e-03

email-Enron 6.3e-04 4.3e-04 3.8e-04 3.4e-04 5.4e-03 2.2e-03 1.8e-03 1.9e-03 4.1e-03 4.3e-03 3.3e-03 3.1e-03 1.9e-02 1.1e-02 1.5e-02 9.4e-03 2.4e-02 2.6e-02 2.3e-02 1.2e-02 2.4e-02 3.9e-02 2.5e-02 2.1e-02

contact-high-school 6.4e-07 1.1e-06 1.1e-06 9.4e-07 1.5e-05 1.6e-05 7.5e-06 1.2e-05 5.3e-05 4.3e-05 8.6e-05 3.7e-05 3.8e-04 0.0e+00 9.1e-05 7.2e-05 1.1e-03 4.1e-04 6.7e-04 3.5e-04 2.4e-03 1.6e-03 2.1e-03 1.4e-03

contact-primary-school 2.6e-06 0.0e+00 3.2e-05 1.0e-06 3.7e-06 1.7e-05 6.9e-05 3.2e-06 6.7e-05 5.6e-05 3.2e-04 1.0e-04 9.0e-05 0.0e+00 1.9e-04 5.1e-05 2.7e-04 2.6e-04 8.6e-04 2.6e-04 1.4e-03 9.9e-04 2.1e-03 8.8e-04

1 1

1

1 1

2+

1
2+

2+

2+

2+

2+

40 60 80 100 40 60 80 100 40 60 80 100 40 60 80 100

coauth-DBLP 8.3e-03 8.6e-03 8.5e-03 7.6e-03 1.0e-02 1.1e-02 1.1e-02 1.1e-02 1.2e-02 1.5e-02 1.5e-02 1.7e-02 1.3e-02 1.6e-02 1.7e-02 1.9e-02

coauth-MAG-Geology 8.6e-03 1.2e-02 9.4e-03 1.0e-02 1.4e-02 2.0e-02 1.5e-02 1.7e-02 1.7e-02 2.9e-02 2.3e-02 2.7e-02 2.2e-02 3.7e-02 3.0e-02 4.0e-02

coauth-MAG-History 1.7e-03 3.4e-03 1.6e-03 1.9e-03 6.0e-03 9.1e-03 4.9e-03 3.8e-03 8.3e-03 2.1e-02 1.4e-02 9.1e-03 5.1e-03 3.6e-02 3.8e-02 1.5e-02

music-rap-genius 1.4e-03 2.3e-03 1.3e-03 1.1e-03 4.8e-03 2.9e-03 2.8e-03 2.2e-03 1.2e-02 7.9e-03 6.5e-03 4.6e-03 2.0e-02 1.7e-02 1.2e-02 8.6e-03

tags-stack-overflow 9.2e-05 7.0e-05 6.5e-05 6.5e-05 5.2e-04 4.4e-04 4.0e-04 3.9e-04 2.7e-03 2.3e-03 2.1e-03 2.1e-03 9.6e-03 8.4e-03 7.7e-03 7.6e-03

tags-math-sx 6.3e-04 5.6e-04 5.4e-04 5.6e-04 2.4e-03 2.3e-03 2.3e-03 2.1e-03 1.0e-02 9.1e-03 9.2e-03 8.6e-03 2.9e-02 2.7e-02 2.7e-02 2.6e-02

tags-ask-ubuntu 5.3e-04 4.5e-04 3.3e-04 2.9e-04 2.2e-03 2.2e-03 1.8e-03 1.7e-03 6.9e-03 7.1e-03 5.9e-03 5.9e-03 2.1e-02 2.3e-02 1.8e-02 1.9e-02

threads-stack-overflow 9.6e-06 6.1e-06 5.7e-06 4.9e-06 4.2e-05 3.5e-05 2.6e-05 2.5e-05 1.5e-04 1.3e-04 1.1e-04 1.1e-04 6.9e-04 5.8e-04 4.3e-04 4.7e-04

threads-math-sx 6.3e-05 5.9e-05 4.3e-05 4.0e-05 1.8e-04 2.3e-04 2.0e-04 1.7e-04 4.6e-04 6.4e-04 6.1e-04 5.4e-04 1.3e-03 2.3e-03 2.7e-03 2.2e-03

threads-ask-ubuntu 0.0e+00 0.0e+00 0.0e+00 8.4e-05 4.5e-05 9.2e-05 3.8e-04 2.9e-04 0.0e+00 5.2e-04 1.7e-03 6.5e-04 1.4e-03 2.2e-03 5.7e-03 3.6e-03

NDC-substances 1.5e-02 1.1e-02 7.6e-03 2.1e-03 3.1e-02 2.2e-02 1.3e-02 3.8e-03 4.8e-02 3.5e-02 2.2e-02 7.2e-03 7.3e-02 4.8e-02 3.9e-02 1.5e-02

NDC-classes 0.0e+00 0.0e+00 0.0e+00 0.0e+00 0.0e+00 0.0e+00 1.1e-01 0.0e+00 0.0e+00 1.3e-01 9.1e-02 5.2e-02 3.6e-02 0.0e+00 8.7e-02 3.4e-02

DAWN 1.7e-03 1.5e-03 2.3e-03 1.7e-03 5.7e-03 6.0e-03 7.9e-03 7.2e-03 1.5e-02 1.7e-02 2.2e-02 2.1e-02 4.8e-02 5.5e-02 7.3e-02 6.9e-02

congress-bills 7.9e-03 1.9e-02 9.5e-03 1.7e-02 9.5e-03 1.8e-02 1.1e-02 1.4e-02 8.4e-03 1.6e-02 1.0e-02 1.1e-02 9.6e-03 1.3e-02 1.1e-02 9.3e-03

congress-committees 0.0e+00 9.8e-03 6.1e-03 5.5e-03 0.0e+00 1.2e-02 8.5e-03 5.9e-03 0.0e+00 1.4e-02 1.1e-02 8.4e-03 0.0e+00 1.2e-02 1.6e-02 1.2e-02

email-Eu 2.5e-03 5.2e-03 1.2e-02 5.3e-03 1.6e-02 9.9e-03 1.5e-02 1.2e-02 2.6e-02 1.8e-02 2.4e-02 2.1e-02 4.7e-02 3.4e-02 4.8e-02 3.3e-02

email-Enron 0.0e+00 2.3e-02 0.0e+00 0.0e+00 6.6e-02 3.9e-02 7.6e-02 3.1e-02 5.9e-02 9.9e-02 8.2e-02 4.8e-02 9.2e-02 8.0e-02 1.4e-01 5.5e-02

contact-high-school 0.0e+00 0.0e+00 0.0e+00 2.6e-03 5.2e-03 2.2e-03 4.0e-03 1.8e-03 7.9e-03 4.9e-03 7.9e-03 5.7e-03 1.3e-02 1.2e-02 1.5e-02 1.2e-02

contact-primary-school 0.0e+00 0.0e+00 5.6e-04 3.8e-04 1.4e-03 1.3e-03 1.3e-03 7.9e-04 3.4e-03 3.6e-03 3.2e-03 3.4e-03 1.7e-02 1.8e-02 1.7e-02 1.7e-02
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D EFFICIENT COUNTING OF SIMPLICIAL
CLOSURE PROBABILITIES

Recall that for our study, an open configuration on three or four

nodes is a set of nodes that have not jointly appeared in a sim-

plex in the training set comprising the first 80% of the timestamped

simplices. This subgraph configuration “closes” if the nodes subse-

quently all appear in one of the final 20% of timestamped simplices

(the test set). For all newly formed simplices in the test set, we can

check their prior configuration c in the training set. This gives us

the number of times each configuration closes. Dividing the num-

ber of closures of a configuration c by the total number of times it

was open in the training set gives the simplicial closure probabil-

ity. As most of the datasets we consider here are relatively large,

however, naively computing the simplicial closure probabilities in

Figs. 4 and 5 is infeasible. Hence, we need to develop efficient algo-

rithms for computing the simplicial closure probabilities.

The key idea of our approach is that we do not need to enumer-

ate all of the configurations in the training set and check if they

close. Instead, we only need the total count of open configurations

in the training data. We then count how many close by examin-

ing the test data directly. The idea of avoiding enumeration when

simply counting suffices has been used in other fast graph config-

uration counting algorithms [48, 52].

D.1 Counting for 3-node configurations

We first show how to count the number of each 3-node subgraph

configuration (the top row of Table 6). Recall that a weak tie cor-

responds to an edge in the projected graph with a weight of 1,

whereas a strong tie corresponds to an edge with a weight of at

least 2. Subscripts of 1 and 2 denote weak and strong ties in our

notation. (Note that we use “2+” for strong ties in the illustrations

in Table 6; however, it will be convenient to use the integer 2 in

our description of the algorithms.)

Let τi, j,k , 1 ≤ i ≤ j ≤ k ≤ 2, be the number of (open or

closed) triangles whose edges have the tie strengths given by the

subscripts. For instance, τ1,1,1 is the number of triangles whose

edges are all weak ties. Similarly, let σi, j,k be the number of tri-

angles with given tie strengths that are open (see the right-most

configurations in the top row block of Table 6). We can count the

number of all triangles τi, j,k using a number of efficient triangle

enumeration algorithms for sparse graphs [31]. For each of these

triangles we then determine whether it is closed by examining

the entries of a simplex-to-node adjacency matrix (this can be effi-

ciently read out from our set-based data). The difference between

the total number of triangles and the number of closed triangles

gives us the open triangle counts σi, j,k .

Next, consider the number of 2-edge, 3-node induced “wedge”

subgraphs. Let the symbols ω1,1, ω1,2, and ω2,2 denote these con-

figurations, where the tie strengths of the two edges are given by

the subscripts (see the top row block of Table 6). Furthermore, let

d1(u) and d2(u) be the number of weak and strong ties containing

node u as an endpoint. Then ωi, j is given by the number of (non-

induced) 2-edge, 3-node subgraphs with tie strengths i and j minus

the ones that appear in triangles:

ω1,1 =
∑
u

(d1(u)
2

)
− 3τ1,1,1 − τ1,1,2 (5)

ω2,2 =
∑
u

(d2(u)
2

)
− 3τ2,2,2 − τ1,2,2 (6)

ω1,2 =
∑
u d1(u)d2(u) − 2τ1,1,2 − 2τ1,2,2 (7)

Now let η1 and η2 be the counts of the 1-edge, 3-node induced

subgraphs, where again the tie strength of the edge is given by the

subscript (see the first row of Table 6). Denote the total number of

weak and strong ties byms =
1
2

∑
u ds (u), s = 1, 2, and the total

number of nodes by n. Then the total number of (non-induced)

1-edge, 3-node subgraphs with tie strength s is then ms (n − 2).

Induced 1-edge, 3-node subgraph are given by the non-induced

counts minus the 2- and 3-edge induced counts discussed above:

η1 =m1(n − 2) − 2ω1,1 − ω1,2 − 3τ1,1,1 − 2τ1,1,2 − τ1,2,2 (8)

η2 =m2(n − 2) − 2ω2,2 − ω1,2 − 3τ2,2,2 − 2τ1,2,2 − τ1,1,2 (9)

Finally, let ϕ be the number of empty 3-node induced subgraphs

of the projected graph (the top left of Table 6). The number of sub-

sets of 3 nodes minus all other induced 3-node subgraphs gives the

value of ϕ:

ϕ =
(n
3

)
−
∑2
s=1 ηs −

∑
1≤i, j≤2ωi, j −

∑
1≤i≤j≤k≤2 τi, j,k . (10)

D.2 Counting for 4-node configurations

Now we describe how we compute the simplicial closure probabil-

ities conditioned on the 27 subgraph configurations on 4 nodes in

Fig. 5 (these are the 4-node configurations in the second through

fifth row blocks of Table 6). Recall that the simplicial tie strength

of a triangle is (i) open if the three nodes form an open triangle;

(ii) weak if the three nodes have jointly appeared in exactly one

simplex; or (iii) strong if the three nodes have jointly appeared in

at least two simplices. We use subscripts 0, 1, and 2 to denote these

three strengths.

There are 15 total 4-node, 6-edge tetrahedral subgraph config-

urations. Each configuration corresponds to a non-decreasing 4-

tuple of the simplicial tie strengths of the four triangles in the

configuration. We denote the sum of open and closed tetrahedral

counts by ρi, j,k,l , where i , j, k , and l denote the simplicial tie

strengths, and the open tetrahedral counts by πi, j,k,l (0 ≤ i ≤

j ≤ k ≤ l ≤ 2; the 15 configurations in the bottom two row blocks

of Table 6). We may count both ρi, j,k,l and πi, j,k,l by enumerat-

ing 4-cliques using, e.g., the Chiba and Nishizeki algorithm [14]

and checking if each 4-clique is closed or open by examining the

simplex-node adjacency matrix.

Next, we consider counts of the six 4-node, 5-edge subgraph

configurations θi, j , where each configuration is given by a non-

decreasing pair of simplicial tie strengths for the two triangles in

the configuration (the third row block of Table 6). Each instance of

this configuration consists of two triangles sharing one edge. We

first use a fast triangle enumeration algorithm to compute matri-

ces Y (s), s ∈ {0, 1, 2}, where Y
(s)
uv is the number of triangles with

simplicial tie strength s containing nodes u and v . The counts of

the non-induced configuration, which we denote by θ ′i, j , are then
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counts. Let Ts be the set of triangles with simplicial tie strength

s ∈ {0, 1, 2}, and let as and bs count how many times triangles

with a particular tie strength appear in 5-edge configuration pat-

terns and 6-edge configuration patterns:

as =
∑
0≤i≤j≤2(Ind[i = s] + Ind[j = s])θi, j (14)

bs =
∑
(i, j,k,l )∈S(Ind[i = s] + Ind[j = s] (15)

+ Ind[k = s] + Ind[l = s])ρi, j,k,l .

Consider a fixed triangle (u,v,w) with simplicial tie strength s .

We would like to count the number of times this triangle appears

in a 4-node, 4-edge subgraph configuration. Each neighbor of each

of the three nodes in the triangle is either (i) the neighbor of just

one node in the triangle (ii) the neighbor of exactly two nodes in

the triangle, or (iii) the neighbor of all three nodes in the triangle.

The first case corresponds to the induced subgraph in which we

are interested, the second case to counts θi, j , and the third case to

counts ρi, j,k,l . By the inclusion-exclusion principle,

ψs =
∑
(u,v,w )∈Ts (du + dv + dw − 6) − 2as − 3bs , (16)

where d is the degree vector of nodes in the unweighted projected

graph.

Finally, we count the 4-node subgraph configuration consisting

of a triangle and an isolated node (the three leftmost configurations

in the second row block of Table 6). Again, we count three types

of this configuration (λs , s ∈ {0, 1, 2}), one for each of the three

simplicial tie strengths of the triangle. Every triangle appears in

(n − 3) non-induced subgraphs with an isolated node, so we only

need to subtract induced subgraph counts with more edges. We

already counted these above, so the counts λs are given by

λs = |Ts |(n − 3) −ψs − as − bs . (17)
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E SCORE FUNCTIONS FOR HIGHER-ORDER
LINK PREDICTION AND EXAMPLE
PREDICTIONS

We derive algorithms for higher-order link prediction, which fall

into four broad categories for determining the score s(i, j,k) of a

triple of nodes:

(1) s(i, j,k) depends only on the weights of the edges (i, j), (i,k),

and (j,k) in the projected graph

(2) s(i, j,k) is based on the local neighborhood features in the

projected graph such as the common neighbors of nodes i ,

j, and k ;

(3) s(i, j,k) comes from a random-walk-based similarity score

(4) s(i, j,k) is a learned logistic regression model in a feature-

based supervised learning setting.

Several of these score functions are generalizations of traditional

approaches for dyadic link prediction [34] to account for higher-

order structure.

Here we introduce some notation for this section. We denote

the set of simplices that nodeu appears in by R(u); formally, R(u) =

{Si | u ∈ Si }. The (weighted) projected graph of a dataset is the

graph on node setV , where the weight of edge (u,v) is the number

of simplices containing both u and v . In other words, the |V | × |V |

weighted adjacency matrixW of the projected graph is defined by

Wuv =

{
|R(u) ∩ R(v)| u , v

0 u = v
(18)

Sometimes, we will only need to consider unweighted version of

the projected graph, which is encoded by the adjacency matrix A

with entries Auv = min(Wuv , 1). Finally, we denote the neighbors

of a node u in the projected graph by N (u) = {v ∈ V |Wuv > 0}.

E.1 Weights in the projected graph

We use three score functions based on the weights of the pair-wise

edges in the subgraph induced by nodes i , j, and k . The motiva-

tion for these methods is that weight-based tie strength positively

correlates with simplicial closure probability in an aggregate sense

(see Fig. 4). Therefore, larger weights amongst the edges between

nodes i , j, and k should yield larger scores. To this end, we use the

the harmonic mean,

s(i, j,k) = 3/(W −1
i j +W

−1
ik
+W −1

jk
), (19)

the geometric mean,

s(i, j,k) =
(
Wi jWikWjk

)1/3
, (20)

and arithmetic mean,

s(i, j,k) = (Wi j +Wik +Wjk )/3, (21)

as score functions. As discussed in the main text, these functions

are all special cases of the generalized mean function (Eq. (3)).

E.2 Local neighborhood features

The next set of score functions use local neighborhood features

such as common neighbors of a triple of nodes. The reasoning here

is that common neighborhood structure amongst a triple of nodes

are positive indicators of association of the nodes; in fact, these

score functions are generalizations of traditional methods used in

dyadic link prediction [34]. The 3-way common neighbors score

function for a triple of nodes i , j, and k is the number of nodes

that have appeared in at least one simplex with each of the three

nodes in the candidate set:

s(i, j,k) = |N (i) ∩ N (j) ∩ N (k)|, (22)

where again N (x) is the set of neighbors of node x in the projected

graph.

The 3-way Jaccard coefficient score normalizes the number of

common neighbors by the total number of neighbors of the three

candidate nodes:

s(i, j,k) =
|N (i) ∩ N (j) ∩ N (k)|

|N (i) ∪ N (j) ∪ N (k)|
. (23)

This score function has been used as a general multi-way similarity

measurement for binary vectors [25], but has not been employed

for a link prediction task until now.

Adamic andAdar proposed log-scaled normalization for features

of common neighbors between two nodes [1]. Here we adapt this

to a 3-way Adamic-Adar score that performs the same normaliza-

tion over the common neighbors of 3 nodes:

s(i, j,k) =
∑

l ∈N (i )∩N (j)∩N (k)

1

log|N (l)|
. (24)

Prior studies on the evolution of co-authorship have suggested

preferential attachment (in terms of degree in the co-authorship

network) as a mechanism for dyadic link formation [7, 42]. We

use two scores based on a preferential attachment model of link

formation. The first is projected graph degree based preferential at-

tachment,

s(i, j,k) = |N (i)| · |N (j)| · |N (k)|, (25)

and the second is simplicial degree based preferential attachment,

s(i, j,k) = |R(i)| · |R(j)| · |R(k)|. (26)

E.3 Paths and random walks

The next set of scores are path-based metrics that ascribe higher

scores when there are more paths in the projected graph between

a candidate triple of nodes. Recall thatA andW are the unweighted

andweighted adjacencymatrices for the projected graph of a dataset.

The Katz score between two nodes is the sum of geometrically

damped length-l paths between two nodes [28]. Katz scores have

been used as a criterion for predicting dyadic links [34, 64]. For-

mally, the Katz score between two nodes i and j in the unweighted

projected graph is
∑∞
l=1

β lAli j , where β is the damping parameter

and Ali j counts the number of length-l paths between i and j. All

pairwise Katz scores can be computed in matrix form as:

K (u)
= (I − βA)−1 − I . (27)

In order to guarantee that theweighted sumof length-l path lengths

converges, we require that β < 1/σ1(A), the principal singular

value of A (this guarantees that I − βA is nonsingular). We chose

β = 1
4σ1(A)

in our experiments.

We can also use paths in the original (weighted) projected graph,

whereW l
i j is the number of length-l paths between i and j if we
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interpret the integer weights inW to be parallel edges. This leads

to the weighted pairwise Katz scores

K (w )
= (I − βW )−1 − I . (28)

Again, β must be less than 1/σ1(W ) to guarantee that (I − βW ) is

nonsingular, and we choose β = 1
4σ1(W )

in our experiments.

Given the pairwise Katz scores, we define score functions for

triplets, based on the pairwise Katz scores. The 3-way Katz score is

s(i, j,k) = K
(u)
i j + K

(u)
ik
+ K

(u)
jk
, (29)

and the weighted 3-way Katz score is

s(i, j,k) = K
(w )
i j + K

(w )

ik
+ K

(w )

jk
, (30)

For many of our datasets, storing the K matrices in a dense for-

mat requires too much memory. In these cases, we use the Krylov

subspace method GMRES [57] (with tolerance 10−3) to solve the

linear systems

(I − βA)kj = ej , j = 1, . . . , |V |, (31)

where ej is the jth standard basis vector. After computing kj , we

store only the entries of the jth column of K corresponding to the

sparsity pattern of the jth column of A. These are the only entries

of K needed for computing the scores in Eq. (29).

The personalized PageRank score is another path-based score

used in dyadic link prediction [5, 34]. Personalized PageRank is

based on the randomwalk underlying the classical PageRank rank-

ing system forweb pages [46].More specifically, consider aMarkov

chain, where at each step, with probability 0 < α < 1, the chain

transitions according to a randomwalk in a graph, and with proba-

bility 1−α transitions to node i . The personalized PageRank score

of node j with respect to node i is then the stationary probabil-

ity of the state j for the Markov chain. The pairwise personalized

PageRank scores are given by the matrix

F (u) = (1 − α)(I − αAD−1)−1, (32)

where F
(u)
ji is the personalized PageRank score of j with respect to

node i . HereD is the diagonal degree matrix,Dj j =
∑
i Ai j . We can

again provide an analog for the weighted case:

F (w )
= (1 − α)(I − αWD−1

W )−1, (33)

where [DW ]j j =
∑
iWi j is the weighted diagonal degree matrix.

As we did with the Katz scores, we construct three-way scores

from the pairwise personalized PageRank scores. The 3-way per-

sonalized PageRank score is

s(i, j,k) = F
(u)
i j + F

(u)
ji + F

(u)

ik
+ F

(u)

ki
+ F

(u)

jk
+ F

(u)

k j
, (34)

and the weighted 3-way personalized PageRank score is

s(i, j,k) = F
(w )
i j + F

(w )
ji + F

(w )

ik
+ F

(w )

ki
+ F

(w )

jk
+ F

(w )

k j
. (35)

(Unlike the Katz score matrices K , the personalized PageRank ma-

trices are not symmetric, so we account for both directions of the

edges.)

We also use a recent generalization of the personalized PageR-

ank score for abstract simplicial complexes, based on tools from

algebraic topology [27]. Here, we describe the computations nec-

essary for these scores, assuming a basic knowledge of algebraic

topology.We provide a brief derivation of the method and the nec-

essary topology background in the next section of the supporting

information.

We consider the abstract simplicial complex defined by the union

of the set of closed triangles T , the set of edges E, and the set of

vertices V . We orient the edges and triangles so that (i, j) for i < j

corresponds to an edge {i, j} and (i, j,k) for i < j < k corresponds

to a closed triangle {i, j,k}. Following the ideas of Horn et al. [27],

we define the normalized combinatorial Hodge Laplacian as

∆̂ = (GD−1GT +CTC)M−1
, (36)

where the “gradient operator”G is a |E | × |V | matrix defined by

G(i, j),x =




1 x = j

−1 x = i

0 otherwise,

(37)

the “curl operator”C is a |T | × |E | matrix defined by

C(i, j,k), (x,y) =




1 (x,y) = (i, j) or (x,y) = (j,k)

−1 (x,y) = (i,k)

0 otherwise,

(38)

D is a diagonal matrix defined by

Dxx =
∑
(i, j) |G(i, j),x |, (39)

and M is a diagonal matrix defined by

M(x,y), (x,y) = 2 +
∑
(i, j,k) |C(i, j,k), (x,y) |. (40)

Thematrix P = 1
2 (I−∆̂) defines aMarkov-like operator (see next

section). The simplicial PageRank scores (defined on each pair of

edges) can thus be defined analogously to the standard PageRank:

S = (I − αP)−1(1 − α). (41)

Here, the matrix S defines pairwise scores between edges, and we

construct a score function on triples of nodes by taking the sum of

pairwise scores. The 3-way simplicial personalized PageRank score

is

s(i, j,k) = |S(i, j), (j,k) | + |S(j,k), (i, j) | (42)

+ |S(i, j), (i,k) | + |S(i,k), (i, j) |

+ |S(j,k), (i,k) | + |S(j,k), (i,k) |.

We may further decompose the pairwise scores into the gradi-

ent, harmonic, and curl components given by the Hodge decompo-

sition. Computationally, we solve the least squares problems

min
X

‖GX − S ‖F , min
Y

‖CTY − S ‖F (43)

using the iterative method LSQR [47] (with tolerances 10−3) on

each column. Given the minimizers X ∗ and Y ∗ of Eq. (43), the com-

ponents of the Hodge decomposition are

Sgrad = GX
∗ (44)

Scurl = C
TY ∗ (45)

Sharm = S − Sgrad − Scurl. (46)

Each of Sgrad, Scurl, and Sharm defines pairwise scores between

edges, and we construct score functions on triples of nodes in the

same way as in Eq. (42).
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Table 7: Open triangle closure prediction performance based

on score functions from the Hodge decomposition of the

simplicial personalized PageRank vector.

Dataset Rand. combined gradient harmonic curl

coauth-MAG-History 7.16e-04 1.35 1.25 1.13 1.27

music-rap-genius 6.82e-04 1.39 1.44 1.40 1.47

tags-math-sx 1.08e-03 1.86 0.73 0.66 0.74

tags-ask-ubuntu 1.08e-03 1.19 0.61 0.59 0.71

threads-ask-ubuntu 1.31e-04 0.61 0.58 0.61 4.59

NDC-substances 1.17e-03 1.86 0.63 0.72 0.60

NDC-classes 6.72e-03 2.45 1.37 0.83 1.74

DAWN 8.47e-03 1.55 0.59 0.60 0.65

congress-committees 6.99e-04 2.13 1.22 1.13 1.63

email-Enron 1.40e-02 2.02 2.90 1.98 2.46

email-Eu 5.34e-03 1.26 1.28 0.82 1.63

contact-high-school 2.47e-03 0.78 0.99 1.68 2.38

contact-primary-school 2.59e-03 0.93 1.45 1.84 3.26

We report the performance results in Table 7 (analogous to those

in Table 2) for the datasets that were small enough on which com-

puting theHodge decompositionwas computationally feasible. We

observe that the components from the Hodge decomposition can

provide substantially better results than the “combined” simplicial

PageRank score reported in the main text in Table 2. However, no

component consistently out-performs the others.

E.4 Supervised learning

Finally, we used a supervisedmachine learning approach that learns

the appropriate score function given features of the open triangle.

To this end, we further divide the training data into a sub-training

set (simplices appearing in the first 60% of the entire dataset) and

a validation set (simplices appearing between the 60th and 80th

percentile of the time spanned by the entire dataset). We trained

an ℓ2-regularized logistic regression model7 for predicting closure

on the validation set using features of open structures in the sub-

training set. The features for each open triangle (i, j,k) were

(1) the number of simplices containing pairs of nodes i and j, i

and k , and j and k ;

(2) the degree of nodes i , j, and k in the projected graph: |N (i)|,

|N (j)|, and |N (k)|;

(3) the number of simplices containing nodes i , j, and k : |R(i)|,

|R(j)|, and |R(k)|;

(4) the number of common neighbors in the projected graph of

nodes i and j, i and k , and j and k : |N (i)∩N (j)|, |N (i)∩N (k)|,

and |N (j) ∩ N (k)|;

(5) the number of common neighbors of all three nodes i , j, and

k in the projected graph: |N (i) ∩ N (j) ∩ N (k)|

(6) the log of the features in Items 1 to 3 and the log of the sum

of 1 and the feature value for the features in Items 4 and 5.

After learning the model, we predicted on the test set using the

same features computed on the entire training set (first 80% of the

dataset).

7Using the scikit learn library [51]: http://scikit-learn.org/

Table 8: Top 25 predictions from the 3-way Adamic-Adar

algorithm for open triangles to simplicially close in the

DAWN dataset. An “X” marks open triangles that actually

simplicially close in the final 20% of the time spanned by the

dataset. Four of the top 25 predictions simplicially close.

1 methyldopa; gentamicin; proton pump inhibitors

2 X norepinephrine; chlormezanone; proton pump inhibitors

3 ranitidine; gentamicin; proton pump inhibitors

4 dihydroergotamine; methyldopa; asa/butalbital/caffeine/codeine

5 ranitidine; gentamicin; levodopa

6 praziquantel; diazepam; alfentanil

7 asa/caffeine/dihydrocodeine; praziquantel; proton pump inhibitors

8 chloral hydrate; tobramycin; sumatriptan

9 oxybutynin; gentamicin; tobramycin

10 asa/caffeine/dihydrocodeine; norepinephrine; sumatriptan

11 ampicillin; chlormezanone; proton pump inhibitors

12 bepridil; diazepam; alfentanil

13 colestipol; oxybutynin; proton pump inhibitors

14 X nadolol; benazepril; proton pump inhibitors

15 thalidomide; amiloride; maprotiline

16 X nadolol; lamivudine-zidovudine; proton pump inhibitors

17 chloral hydrate; verapamil; methyldopa

18 chlorzoxazone; benazepril; proton pump inhibitors

19 heparin; asa/caffeine/dihydrocodeine; proton pump inhibitors

20 oxcarbazepine; norepinephrine; proton pump inhibitors

21 dihydroergotamine; tobramycin; alfentanil

22 maprotiline; norepinephrine; proton pump inhibitors

23 oxybutynin; methyldopa; dihydroergotamine

24 heparin; dihydroergotamine; proton pump inhibitors

25 X ampicillin; methyldopa; diazepam

E.5 Example predictions

Finally, Table 8 provides a concrete example of the predictions from

our framework—specifically, the top 25 predictions of the Adamic-

Adar score function on the DAWN dataset. In this dataset, fewer

than one in a hundred open triangles in the training set simplicially

close in the test set, but 4 of the top 25 predictions from this score

function simplicially close. Three of the correct predictions relate

to novel combinations with proton pump inhibitors.
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F ADDITIONAL TOPOLOGY BACKGROUND
AND SIMPLICIAL PAGERANK

In the following we provide a brief summary of simiplicial com-

plexes and notions from algebraic topology underpinning some of

the results presented in the manuscript. The presentation here is

deliberately simple and geared towards conveying intuition rather

than exposing all the mathematical details. We refer to Hatcher’s

book [24] for rigorous details as well as Lim’s survey [35] for read-

able introductions to the topic.

Given a finite set of nodesV , we define a k-node simplex Si as a

subset of k nodes. In more standard topological parlance, V would

be called the set of points, and a subset of k + 1 of those points

would be denoted a k-simplex. We deviate from this standard here

to emphasize the relationships to graphs, which might be more

familiar for a reader not acquainted with (algebraic) topology. A

face of ak-node simplex Si is a (k−1)-node simplex Sj ⊂ Si that is a

proper subset of Si . An abstract simplicial complex K is now a finite

collection of simplices {Si } that is closed with respect to inclusion

of faces, i.e., if the k-node simplex Si is part of K , then all of its

faces are also part of K . Simplicial complexes may intuitively be

regarded as generalizations of graphs, in which not only binary but

also higher-order relationships between the vertices are allowed.

More concretely, a graph is a finite collection of 1-node simplices

(the vertices) and 2-node simplices (the edges). Moreover, as an

edge can of course only exist between two nodes that are present

in the graph, the closure condition for the faces is fulfilled for a

graph.

Simplicial complexes may also be seen as a special form of hy-

pergraph, in which a hyperedge can only be present if all the pos-

sible subsets of the hyperedge are also present in the graph. While

this restricts the flexibility of simplicial complexes as a modeling

tool compared to generic hypergraphs, there is an intimate rela-

tionships between simplicial complexes and algebraic topology. In-

deed, simplical complexes carry additional algebraic structure that

can be exploited in applications such as ours. Also, observe that the

data we consider in this paper is set-valued, i.e., we consider sets

of (interacting) nodes appearing over time. Simplicial complexes

are a natural modeling framework in this context, as observing a

set of nodes Si together implies that all the subsets of Si have been

observed together, too.

For the rest of this section, we consider the abstract simplicial

complex whose largest simplices are closed triangles in the dataset.

Formally, the complex is the union of vertices, edges and closed

triangles. Thus, every element of our abstract simplicial complex

is a 1-node, 2-node, or 3-node simplex.

The graph Helmholtzian. In close analogy to graphs, one can de-

fine Laplacian operators for simplicial complexes (the so-called

Hodge Laplacian). For the special case of our abstract simplicial

complex induced by triangles, this higher-order Laplacian is called

the graph Helmholtzian.

We write the graph Helmholtzian as a linear operator on the

space of alternating functions on the edges of the projected graph,

following the presentation and notation of Lim [35]. Let H (V ) be

the Hilbert space of function on the vertices of our data, where the

inner product is

〈f ,д〉V =
∑
i ∈V f (i)д(i) (47)

LetH∧(E) be theHilbert space of alternating functions on the edges

of the projected graph, where the inner product is

〈X ,Y 〉E =
∑
(i, j)∈E X (i, j)Y (i, j). (48)

Here, E is the set of edges in the projected graph and alternating

means that X (i, j) = −X (i, j). Note that we sum over each edge

only once, i.e., we may consider the sum to be over all indices with

i < j. Further, X (i, j) = 0 for all (i, j) < E.

We similarly define H∧(T ) to be the Hilbert space of alternating

functions on the set of closed trianglesT , where the inner product

is

〈Φ,Ψ〉T =
∑

(i, j,k)∈C Φ(i, j,k)Ψ(i, j,k). (49)

Again the sum is taken, such that each cycle is counted exactly

once. In the space of triangles, the fact that the functions we con-

sider are alternating means that

Φ(i, j,k) = Φ(k, i, j) = Φ(j,k, i)

= −Φ(i,k, j) = −Φ(j, i,k) = −Φ(k, j, i)

Further, Φ(i, j,k) = 0 for all (i, j,k) < C .

We define the operators grad : H (V ) → H∧(E) and curl : H∧(E) →

H∧(T ) as follows:

(grad f )(i, j) = f (j) − f (i) (50)

(curl X )(i, j,k) = X (i, j) + X (j,k) + X (k, i) (51)

These operators are indeed the discrete equivalents of the gradient

and curl operators known from continuous vector calculus, thus

justifying our naming scheme. For more details refer to Lim [35].

In the language of algebraic topology, the above operators are

co-boundary operators on our simplicial complex. One can check

that the adjoints of these linear operators are grad∗ : H∧(E) →

H (V ) and curl∗ : H∧(T ) → H∧(E), defined via

(grad∗X )(i) = −
∑n
j=1 X (i, j) (52)

(curl∗Φ)(i, j) =
∑n
k=1

Φ(i, j,k) (53)

Sometimes the negative of the grad∗ is called the divergence oper-

ator. The Hodge Laplacian linear operator on H∧(E), which we de-

note by ∆ : H∧(E) → H∧(E), is called the graph Helmholtzian [35]:

∆ = grad grad∗ + curl∗curl. (54)

Using these definitions, it can be seen that the standard graph

Laplacian L can be written as:

L = grad∗grad. (55)

The Hodge decomposition on edge flows.The space of alternating

function on edges, H∧(E), is sometimes called the space of edge

flows, as an element X ∈ H∧(E) induces a flow on the graph. The

space H∧(E) can be decomposed into three orthogonal parts, each

of which with a special meaning in terms of flows. The Hodge de-

composition provides this decomposition:

H∧(E) = im(grad) ⊕ null(∆) ⊕ im(curl∗) (56)

In this decomposition, im(grad) is called the cut space, or the

gradient component of an edge flow [10]. It consists of all the flows

which have no cyclic component, i.e., their sum along any cyclic
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path in the graph is zero, taking into account the orientations of

the edges. Following Eq. (50), any such flow can be obtained by

defining a scalar potential on each node, and the edge flows are

the difference of the scalar potentials at its two endpoints. Second,

im(curl∗) consists of all flows that can be composed out of local

circulations along any 3-node simplex, i.e., a circulation around

a closed triangle. Third, null(∆) is the space of harmonic flows,

which correspond to those flows which are locally circulation free

in that they cannot be composed from curl flows. However, har-

monic flows are not expressible as gradients either, in that they

contain a global circulatory component and thus do not sum to

zero around every cyclic path. The name harmonic component de-

rives from the fact, that the Helmholtzian is in fact the discrete

analog of the Helmholtz or vector Laplacian operator in the con-

tinuous domain. The dimension of null(∆) is a Betti number of the

simplicial complex. In our case, it corresponds to the number of

“holes” in the simplicial complex.

Extending PageRank to simplicial complexes.Wenow give an overview

of the ideas of Horn et al. for defining a suitable notion of PageR-

ank for simplicial complexes [27]. The central idea is to relate the

notion of PageRank on graphs to a normalization of the graph

Laplacian operator. We then provide a normalization for the graph

Helmholtzian to derive a PageRank formulation for simplicial com-

plexes.

Recall that the PageRank operator is defined via a Markov oper-

ator P , acting on H (V ). More specifically, the Markov operator is

given by a random walk on the graph, which can be written as

P = I − grad∗gradD−1
= I − LD−1

. (57)

Consider the vectorpt , describing the probability of a randomwalker

being present at any of the nodes at time t . Then, the randomwalk

on the graph can be written as pt+1 = Ppt .

The personalized PageRank scores v with respect to node i are

solutions

(I − αP)v = ei (1 − α), (58)

where ei ∈ H (V ) takes value 1 at node i and 0 elsewhere.

The idea of Horn et al. is to normalize the graphHelmholtzian ∆

to a linear operator ∆̂which can also be interpreted from aMarkov

chain viewpoint. Specifically, they introduce the following normal-

ized Helmholtzian

∆̂ = (grad D−1grad∗ + curl∗curl)M−1
, (59)

where D−1 : H (V ) → H (V ) is a diagonal node scaling operator,

(D−1 f )(i) =
1

di
f (i), di = |{j : {i, j} ∈ E}|, (60)

and M−1 : H∧(E) → H∧(E) is a diagonal edge scaling operator,

(M−1X )(i, j) =
1

mi, j
X (i, j) (61)

mi, j = 2 + |{k : {i, j,k} ∈ C}| =: 2 + di, j . (62)

We now show how ∆̂ maps elements of H∧(E):

(curl∗curl X )(i, j) (63)

=

∑
k :{i, j,k }∈C (curlX )(i, j,k) (64)

=

∑
k :{i, j,k }∈C X (i, j) + X (j,k) + X (k, i) (65)

= di, jX (i, j) +
∑
k :{i, j,k }∈C [X (j,k) + X (k, i)] (66)

and

(grad D−1grad∗X )(i, j) (67)

= (D−1grad∗X )(j) − (D−1grad∗X )(i) (68)

=
1
dj
(grad∗X )(j) − 1

di
(grad∗X )(i) (69)

=
1
di

∑
k :{i,k }∈E X (i,k) −

1
dj

∑
k :{j,k }∈E X (j,k) (70)

Let us now define the transpose operator ∆̂⊤ by putting every-

thing together and including the normalization fromM−1.

(∆̂TX )(i, j) (71)

=
1

2+di, j
[di, jX (i, j) +

∑
{i, j,k }∈C X (j,k) + X (k, i) (72)

+
1
di

∑
{i,k }∈E X (i,k) −

1
dj

∑
{j,k }∈E X (j,k)], (73)

Note that as (curl∗curl) and (grad D−1grad∗) are symmetric this

simply amounts to applying a row normalization instead of the

column normalization by M , which will be useful in the sequel.

We now define the operatorQT
=

1
2 (I − ∆̂)T ,

(QTX )(i, j) (74)

=
1

4+2di, j
[2X (i, j) −

∑
{i, j,k }∈C X (j,k) + X (k, i) (75)

− 1
di

∑
{i,k }∈E X (i,k) +

1
dj

∑
{j,k }∈E X (j,k)] (76)

=
1

4+2di, j
[2X (i, j) +

∑
{i, j,k }∈C X (k, j) + X (i,k) (77)

+
1
di

∑
{i,k }∈E X (k, i) +

1
dj

∑
{j,k }∈E X (j,k)]. (78)

Here, in the second equality, we used the fact that X is an alternat-

ing function.

Let us know define the operator Q̃T in exactly this way, but now

acting on the whole space of (non-alternating) edge functions. It is

now easy to see that Q̃T is a row stochastic Markov operator, i.e.,

if Y (i, j) = Y (j, i) = 1 for all {i, j} ∈ E,

(Q̃TY )(i, j) (79)

=

2 +
∑
k :{i, j,k }∈C 2 + 1

di

∑
k :{i,k }∈E 1 + 1

dj

∑
k :{j,k }∈E 1

4 + 2di, j
(80)

=

2 + 2di, j +
1
di
di +

1
dj
d j

4 + 2di, j
= 1. (81)

Hence, its transpose Q̃ is column stochastic and corresponds to a

Markov operator acting on the space of edge functions.

The corresponding equivalentQ in the space of alternating edge

functions may thus be related to a random walk on the edge space,

which justifies the use the above scheme in a personalized PageR-

ank style. In particular, the solution v to the system

1

2
(I − αQ)v = ei (82)

defines an edge flow, signifying how important each edge is to the

ith edge.
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